commit 8d4d813d0fc91875193c75da355b84057a76dc42
parent 24a276b93f621383ca91bcd20becb79abb62e7f7
Author: Vincent Forest <vincent.forest@meso-star.com>
Date: Mon, 27 Jul 2020 14:45:48 +0200
Merge remote-tracking branch 'origin/test_transcient2' into feature_boundary_time
Diffstat:
4 files changed, 574 insertions(+), 2 deletions(-)
diff --git a/cmake/CMakeLists.txt b/cmake/CMakeLists.txt
@@ -198,6 +198,7 @@ if(NOT NO_TEST)
new_test(test_sdis_solve_boundary_flux)
new_test(test_sdis_solve_medium)
new_test(test_sdis_solve_medium_2d)
+ new_test(test_sdis_transcient)
new_test(test_sdis_volumic_power)
new_test(test_sdis_volumic_power4)
diff --git a/src/test_sdis_solve_probe2.c b/src/test_sdis_solve_probe2.c
@@ -218,9 +218,9 @@ main(int argc, char** argv)
/* Setup the per primitive scene interfaces */
CHK(sizeof(interfaces)/sizeof(struct sdis_interface*) == box_ntriangles);
- interfaces[0] = interfaces[1] = T300; /* Front face */
+ interfaces[0] = interfaces[1] = T300; /* Back face */
interfaces[2] = interfaces[3] = Tnone; /* Left face */
- interfaces[4] = interfaces[5] = T350; /* Back face */
+ interfaces[4] = interfaces[5] = T350; /* Front face */
interfaces[6] = interfaces[7] = Tnone; /* Right face */
interfaces[8] = interfaces[9] = Tnone; /* Top face */
interfaces[10] = interfaces[11] = Tnone; /* Bottom face */
diff --git a/src/test_sdis_transcient.c b/src/test_sdis_transcient.c
@@ -0,0 +1,570 @@
+/* Copyright (C) 2016-2019 |Meso|Star> (contact@meso-star.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#include "sdis.h"
+#include "test_sdis_utils.h"
+
+#include <string.h>
+
+#define UNKNOWN_TEMPERATURE -1
+
+/*
+ * The scene is composed of a solid cuboid whose temperature is fixed on its 6
+ * faces. The test consist in checking that the estimated temperature at a
+ * given temperature and time is compatible with the reference temperature
+ * computed by analytically evaluating the green function.
+ *
+ * The test is performed on 2 scenes that actually represent the same system.
+ * The first scene is simply the cuboid, as it. The second scene is the same
+ * cuboid but this time formed by 2 sub cuboid with strictly the same physical
+ * properties.
+ */
+
+static const double vertices[12/*#vertices*/*3/*#coords per vertex*/] = {
+ 0.0, 0.0, 0.0,
+ 0.5, 0.0, 0.0,
+ 0.0, 1.0, 0.0,
+ 0.5, 1.0, 0.0,
+ 0.0, 0.0, 1.0,
+ 0.5, 0.0, 1.0,
+ 0.0, 1.0, 1.0,
+ 0.5, 1.0, 1.0,
+ 1.0, 0.0, 0.0,
+ 1.0, 1.0, 0.0,
+ 1.0, 0.0, 1.0,
+ 1.0, 1.0, 1.0
+};
+static const size_t nvertices = sizeof(vertices) / sizeof(double[3]);
+
+/* The following array lists the indices toward the 3D vertices of each
+ * triangle.
+ * ,2---,3 ,3---,9 | ,2----3 ,3----9
+ * ,' | ,'/| ,' | ,'/| | ,'/| \ | ,'/| \ | Y
+ * 6----7' / | 7---11' / | | 6' / | \ | 7' / | \ | |
+ * |', | / ,1 |', | / ,8 | | / ,0---,1 | / ,1---,8 o--X
+ * | ',|/,' | ',|/,' | |/,' | ,' |/,' | ,' /
+ * 4----5 5---10 | 4----5' 5---10' Z
+ */
+static const size_t indices[22/*#triangles*/*3/*#indices per triangle*/] = {
+ 0, 4, 2, 2, 4, 6, /* X min */
+ 3, 7, 5, 5, 1, 3, /* X mid */
+ 9,11,10,10, 8, 9, /* X max */
+ 0, 5, 4, 0, 1, 5, 1,10, 5, 1, 8,10, /* Y min */
+ 2, 6, 7, 2, 7, 3, 3, 7,11, 3,11, 9, /* Y max */
+ 0, 2, 1, 1, 2, 3, 1, 3, 8, 8, 3, 9, /* Z min */
+ 4, 5, 6, 6, 5, 7, 5,10, 7, 7,10,11 /* Z max */
+};
+static const size_t ntriangles = sizeof(indices) / sizeof(size_t[3]);
+
+/*******************************************************************************
+ * Box geometry functions
+ ******************************************************************************/
+struct context {
+ const double* vertices;
+ const size_t* indices;
+ struct sdis_interface* interfs[22];
+ const double* scale;
+};
+
+static void
+get_position(const size_t ivert, double pos[3], void* context)
+{
+ struct context* ctx = context;
+ CHK(ctx);
+ pos[0] = ctx->vertices[ivert*3+0] * ctx->scale[0];
+ pos[1] = ctx->vertices[ivert*3+1] * ctx->scale[1];
+ pos[2] = ctx->vertices[ivert*3+2] * ctx->scale[2];
+}
+
+static void
+get_indices(const size_t itri, size_t ids[3], void* context)
+{
+ struct context* ctx = context;
+ CHK(ctx);
+ ids[0] = ctx->indices[itri*3+0];
+ ids[1] = ctx->indices[itri*3+1];
+ ids[2] = ctx->indices[itri*3+2];
+}
+
+static void
+get_interface(const size_t itri, struct sdis_interface** bound, void* context)
+{
+ struct context* ctx = context;
+ CHK(ctx);
+ *bound = ctx->interfs[itri];
+}
+
+/*******************************************************************************
+ * Solid medium
+ ******************************************************************************/
+struct solid {
+ double cp;
+ double lambda;
+ double rho;
+ double delta;
+ double init_temperature;
+};
+
+static double
+solid_get_calorific_capacity
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ CHK(data != NULL && vtx != NULL);
+ return ((const struct solid*)sdis_data_cget(data))->cp;
+}
+
+static double
+solid_get_thermal_conductivity
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ CHK(data != NULL && vtx != NULL);
+ return ((const struct solid*)sdis_data_cget(data))->lambda;
+}
+
+static double
+solid_get_volumic_mass
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ CHK(data != NULL && vtx != NULL);
+ return ((const struct solid*)sdis_data_cget(data))->rho;
+}
+
+static double
+solid_get_delta
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ CHK(data != NULL && vtx != NULL);
+ return ((const struct solid*)sdis_data_cget(data))->delta;
+}
+
+static double
+solid_get_temperature
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ CHK(data != NULL && vtx != NULL);
+ if(vtx->time <= 0) {
+ return ((const struct solid*)sdis_data_cget(data))->init_temperature;
+ } else {
+ return UNKNOWN_TEMPERATURE;
+ }
+}
+
+/*******************************************************************************
+ * Interface
+ ******************************************************************************/
+struct interf {
+ double temperature;
+};
+
+static double
+interface_get_temperature
+ (const struct sdis_interface_fragment* frag, struct sdis_data* data)
+{
+ const struct interf* interf = sdis_data_cget(data);
+ CHK(frag && data);
+ return interf->temperature;
+}
+
+static struct sdis_interface*
+create_interface
+ (struct sdis_device* dev,
+ struct sdis_medium* front,
+ struct sdis_medium* back,
+ const struct sdis_interface_shader* interf_shader,
+ const double temperature)
+{
+ struct sdis_data* data = NULL;
+ struct sdis_interface* interf = NULL;
+ struct interf* interf_props = NULL;
+
+ OK(sdis_data_create
+ (dev, sizeof(struct interf), ALIGNOF(struct interf), NULL, &data));
+ interf_props = sdis_data_get(data);
+ interf_props->temperature = temperature;
+ OK(sdis_interface_create
+ (dev, front, back, interf_shader, data, &interf));
+ OK(sdis_data_ref_put(data));
+ return interf;
+}
+
+/*******************************************************************************
+ * Analytical solution
+ ******************************************************************************/
+static void
+fourier_pq
+ (const size_t nterms_pq,
+ const double pos[3],
+ const double sz[3],
+ const int i0,
+ const int i1,
+ const int i2,
+ double green[2])
+{
+ size_t p, q;
+ CHK(green);
+
+ green[0] = 0;
+ green[1] = 0;
+
+ FOR_EACH(p, 0, nterms_pq+1) {
+ FOR_EACH(q, 0, nterms_pq+1) {
+ const double p2 = (double)(2*p + 1);
+ const double q2 = (double)(2*q + 1);
+ double L_sqr, L, tmp;
+ L_sqr = PI * PI * ((p2*p2)/(sz[i1]*sz[i1]) + (q2*q2)/(sz[i2]*sz[i2]));
+ L = sqrt(L_sqr);
+ tmp = sin(PI*p2*pos[i1]/sz[i1])
+ * sin(PI*q2*pos[i2]/sz[i2])
+ / (sinh(sz[i0]*L)*(p2*q2));
+ if(tmp != 0) {
+ green[0] += sinh(L*(sz[i0]-pos[i0]))*tmp;
+ green[1] += sinh(L*pos[i0])*tmp;
+ }
+ }
+ }
+}
+
+/* This function computes the Green function between a given probe
+ * position/time in a parallelepipedic box and each face of this box (within
+ * the model of a homogeneous boundary condition on each face). */
+static void
+green_analytical
+ (const double box_size[3],
+ const double probe[3],
+ const double time,
+ const double rho,
+ const double cp,
+ const double lambda,
+ double green[7])
+{
+ const size_t nterms_fs = 20; /* #terms in the Fourier expansion series */
+ const size_t nterms_pq = 100; /* #terms in double p/q sums */
+ const size_t nt_pq = (nterms_fs - 1)/2;
+ double Gs[7], Gi[7], Gtmp[7];
+ size_t i, m, n, o, p, q;
+ double a, b, c;
+ double alpha;
+
+ CHK(box_size && probe && time >= 0 && green);
+
+ if(time == 0) {
+ memset(green, 0, sizeof(double[7]));
+ green[6] = 1;
+ return;
+ }
+
+ memset(Gs, 0, sizeof(double[7]));
+ memset(Gi, 0, sizeof(double[7]));
+ memset(Gtmp, 0, sizeof(double[7]));
+
+ /* Steady state solution */
+ fourier_pq(nterms_pq, probe, box_size, 0, 1, 2, Gtmp+0); /* Faces 0 and 1 */
+ fourier_pq(nterms_pq, probe, box_size, 1, 0, 2, Gtmp+2); /* Faces 2 and 3 */
+ fourier_pq(nterms_pq, probe, box_size, 2, 1, 0, Gtmp+4); /* Faces 4 and 5 */
+ FOR_EACH(i, 0, 6) Gs[i] += 16 * Gtmp[i] / (PI * PI);
+
+ alpha=lambda/(rho*cp);
+ a=box_size[0];
+ b=box_size[1];
+ c=box_size[2];
+
+ /* Transient solution */
+ FOR_EACH(m, 0, nterms_fs+1) {
+ const double beta = PI*(double)m/a;
+ const double beta_sqr = beta*beta;
+ const int m_is_even = (m%2 == 0);
+
+ FOR_EACH(n, 0, nterms_fs+1) {
+ const double gamma = PI*(double)n/b;
+ const double gamma_sqr = gamma * gamma;
+ const int n_is_even = (n%2==0);
+
+ FOR_EACH(o, 0, nterms_fs+1) {
+ const double eta = PI*(double)o/c;
+ const double eta_sqr = eta*eta;
+ const double zeta = alpha*(beta_sqr+gamma_sqr+eta_sqr);
+ const int o_is_even = (o%2==0);
+ double Fxyzt;
+
+ memset(Gtmp, 0, sizeof(double[7]));
+ FOR_EACH(p, 0, nt_pq+1) {
+ FOR_EACH(q, 0, nt_pq+1) {
+ const double p2 = (double)(2*p + 1);
+ const double q2 = (double)(2*q + 1);
+ const double Lx_sqr = PI*PI*((p2*p2)/(b*b)+(q2*q2)/(c*c));
+ const double Ly_sqr = PI*PI*((p2*p2)/(a*a)+(q2*q2)/(c*c));
+ const double Lz_sqr = PI*PI*((p2*p2)/(b*b)+(q2*q2)/(a*a));
+ const double pq = p2*q2;
+ double itg[11] = {0};
+
+ itg[1] = 2*q-o+1 == 0 ? -c/2.0 : 0;
+ itg[2] = eta / (eta_sqr+Lz_sqr);
+ itg[4] = 2*p-n+1 == 0 ? -b/2.0 : 0;
+ itg[5] = gamma / (gamma_sqr+Ly_sqr);
+ itg[7] = beta / (beta_sqr+Lx_sqr);
+ itg[9] = 2*p-m+1 == 0 ? -a/2.0 : 0;
+ itg[10] = 2*q-m+1 == 0 ? -a/2.0 : 0;
+
+ if((2*q-o+1==0) && (2*p-n+1==0)) {
+ const double z1 = itg[1]*itg[4]*itg[7];
+ Gtmp[0] += z1/pq;
+ Gtmp[1] += (z1*pow(-1.0,(double)(m+1)))/pq;
+ }
+ if((2*q-o+1==0) && (2*p-m+1==0)) {
+ const double z2 = itg[1]*itg[9]*itg[5];
+ Gtmp[2] += z2/pq;
+ Gtmp[3] += (z2*pow(-1.0,(double)(n+1)))/pq;
+ }
+ if((2*p-n+1==0) && (2*q-m+1==0)) {
+ const double z3 = itg[4]*itg[10]*itg[2];
+ Gtmp[4] += z3/pq;
+ Gtmp[5] += (z3*pow(-1.0,(double)(o+1)))/pq;
+ }
+ }
+ }
+ Fxyzt =
+ sin(probe[0]*beta)
+ * sin(probe[1]*gamma)
+ * sin(probe[2]*eta)
+ * exp(-zeta*time);
+
+ FOR_EACH(i, 0, 6) {
+ Gi[i] += Gtmp[i] * Fxyzt;
+ }
+ if((!m_is_even) && (!n_is_even) && (!o_is_even)) {
+ Gi[6] += 8.0 * Fxyzt/(beta*gamma*eta);
+ }
+ }
+ }
+ }
+
+ /* Gi[i], i=0,5: Green of boundary index i */
+ FOR_EACH(i, 0, 6) {
+ Gi[i] = -128.0 * Gi[i]/(a*b*c*PI*PI);
+ }
+
+ /* Gi[6]: Green of the initial condition */
+ Gi[6] = 8.0*Gi[6]/(a*b*c);
+
+ /* Computing total Green function */
+ FOR_EACH(i, 0, 7) {
+ green[i] = Gs[i] + Gi[i];
+ }
+}
+
+static double
+temperature_analytical
+ (const double temperature_bounds[6],
+ const double temperature_init,
+ const double box_size[3],
+ const double probe[3],
+ const double time,
+ const double rho,
+ const double cp,
+ const double lambda)
+{
+ double green[7];
+ double temperature = 0;
+ size_t i;
+ CHK(temperature_bounds && temperature_init && box_size && probe);
+ green_analytical(box_size, probe, time, rho, cp, lambda, green);
+
+ FOR_EACH(i, 0, 6) {
+ printf("Green for face %lu: %g\n", (unsigned long)i, green[i]);
+ temperature += green[i] * temperature_bounds[i];
+ }
+ temperature += green[6] * temperature_init;
+ return temperature;
+}
+
+/*******************************************************************************
+ * Main function
+ ******************************************************************************/
+int
+main(int argc, char** argv)
+{
+ struct mem_allocator allocator;
+ struct sdis_device* dev = NULL;
+ struct sdis_scene* box_scn = NULL;
+ struct sdis_scene* box2_scn = NULL;
+ struct sdis_medium* fluid = NULL;
+ struct sdis_medium* solid = NULL;
+ struct sdis_data* data = NULL;
+ struct sdis_fluid_shader fluid_shader = SDIS_FLUID_SHADER_NULL;
+ struct sdis_solid_shader solid_shader = SDIS_SOLID_SHADER_NULL;
+ struct sdis_interface_shader interf_shader = SDIS_INTERFACE_SHADER_NULL;
+ struct sdis_interface* interfs[7] = {NULL};
+ struct sdis_estimator* estimator = NULL;
+ struct sdis_mc temperature = SDIS_MC_NULL;
+ struct sdis_solve_probe_args solve_args = SDIS_SOLVE_PROBE_ARGS_DEFAULT;
+ struct solid* solid_param = NULL;
+ struct context ctx;
+ const size_t nrealisations = 10000;
+ size_t nfails = 0;
+ double probe[3];
+ double time[2];
+ double Tbounds[6];
+ double Tinit;
+ double Tref;
+ double boxsz[3];
+ double rho, cp, lambda;
+ (void)argc, (void)argv;
+
+ /* System description */
+ rho = 1700;
+ cp = 800;
+ lambda = 1.15;
+ Tbounds[0] = 280; /* Xmin */
+ Tbounds[1] = 290; /* Xmax */
+ Tbounds[2] = 310; /* Ymin */
+ Tbounds[3] = 270; /* Ymax */
+ Tbounds[4] = 300; /* Zmin */
+ Tbounds[5] = 320; /* Zmax */
+ Tinit = 300;
+ boxsz[0] = 0.3;
+ boxsz[1] = 0.1;
+ boxsz[2] = 0.2;
+
+ OK(mem_init_proxy_allocator(&allocator, &mem_default_allocator));
+ OK(sdis_device_create(NULL, &allocator, SDIS_NTHREADS_DEFAULT, 1, &dev));
+
+ /* Create the fluid medium */
+ fluid_shader = DUMMY_FLUID_SHADER;
+ OK(sdis_fluid_create(dev, &fluid_shader, NULL, &fluid));
+
+ /* Setup the solid shader */
+ solid_shader.calorific_capacity = solid_get_calorific_capacity;
+ solid_shader.thermal_conductivity = solid_get_thermal_conductivity;
+ solid_shader.volumic_mass = solid_get_volumic_mass;
+ solid_shader.delta_solid = solid_get_delta;
+ solid_shader.temperature = solid_get_temperature;
+
+ /* Create the solid medium */
+ OK(sdis_data_create
+ (dev, sizeof(struct solid), ALIGNOF(struct solid), NULL, &data));
+ solid_param = sdis_data_get(data);
+ solid_param->rho = rho;
+ solid_param->cp = cp;
+ solid_param->lambda = lambda;
+ solid_param->delta = 1.0/20.0 * MMIN(MMIN(boxsz[0], boxsz[1]), boxsz[2]);
+ solid_param->init_temperature = Tinit;
+ OK(sdis_solid_create(dev, &solid_shader, data, &solid));
+ OK(sdis_data_ref_put(data));
+
+ /* Setup the interface shader */
+ interf_shader.front.temperature = interface_get_temperature;
+
+ /* Create the interfaces */
+ interfs[0] = create_interface(dev, solid, fluid, &interf_shader, Tbounds[0]);
+ interfs[1] = create_interface(dev, solid, fluid, &interf_shader, Tbounds[1]);
+ interfs[2] = create_interface(dev, solid, fluid, &interf_shader, Tbounds[2]);
+ interfs[3] = create_interface(dev, solid, fluid, &interf_shader, Tbounds[3]);
+ interfs[4] = create_interface(dev, solid, fluid, &interf_shader, Tbounds[4]);
+ interfs[5] = create_interface(dev, solid, fluid, &interf_shader, Tbounds[5]);
+ interfs[6] = create_interface(dev, solid, solid, &interf_shader, UNKNOWN_TEMPERATURE);
+
+ /* Setup the box scene context */
+ ctx.indices = box_indices;
+ ctx.vertices = box_vertices;
+ ctx.interfs[0] = ctx.interfs[1] = interfs[4]; /* Zmin */
+ ctx.interfs[2] = ctx.interfs[3] = interfs[0]; /* Xmin */
+ ctx.interfs[4] = ctx.interfs[5] = interfs[5]; /* Zmax */
+ ctx.interfs[6] = ctx.interfs[7] = interfs[1]; /* Xmax */
+ ctx.interfs[8] = ctx.interfs[9] = interfs[3]; /* Ymax */
+ ctx.interfs[10] = ctx.interfs[11] = interfs[2]; /* Ymin */
+ ctx.scale = boxsz;
+
+ /* Create the box scene */
+ OK(sdis_scene_create(dev, box_ntriangles, get_indices, get_interface,
+ box_nvertices, get_position, &ctx, &box_scn));
+
+ /* Setup the box2 scene context */
+ ctx.indices = indices;
+ ctx.vertices = vertices;
+ ctx.interfs[0] = ctx.interfs[1] = interfs[0]; /* Xmin */
+ ctx.interfs[2] = ctx.interfs[3] = interfs[6]; /* Xmid */
+ ctx.interfs[4] = ctx.interfs[5] = interfs[1]; /* Xmax */
+ ctx.interfs[6] = ctx.interfs[7] = interfs[2]; /* Ymin */
+ ctx.interfs[8] = ctx.interfs[9] = interfs[2]; /* Ymin */
+ ctx.interfs[10] = ctx.interfs[11] = interfs[3]; /* Ymax */
+ ctx.interfs[12] = ctx.interfs[13] = interfs[3]; /* Ymax */
+ ctx.interfs[14] = ctx.interfs[15] = interfs[4]; /* Zmin */
+ ctx.interfs[16] = ctx.interfs[17] = interfs[4]; /* Zmin */
+ ctx.interfs[18] = ctx.interfs[19] = interfs[5]; /* Zmax */
+ ctx.interfs[20] = ctx.interfs[21] = interfs[5]; /* Zmax */
+ ctx.scale = boxsz;
+
+ /* Create the box scene */
+ OK(sdis_scene_create(dev, ntriangles, get_indices, get_interface,
+ nvertices, get_position, &ctx, &box2_scn));
+
+ /* Setup and run the simulation */
+ probe[0] = 0.1;
+ probe[1] = 0.06;
+ probe[2] = 0.130;
+ time[0] = time[1] = 1000; /* Observation time range */
+
+ /* Compute the solution */
+ Tref = temperature_analytical
+ (Tbounds, Tinit, boxsz, probe, time[0], rho, cp, lambda);
+
+ /* Run simulation on regular scene */
+ solve_args.nrealisations = nrealisations;
+ solve_args.position[0] = probe[0];
+ solve_args.position[1] = probe[1];
+ solve_args.position[2] = probe[2];
+ solve_args.time_range[0] = 1000;
+ solve_args.time_range[1] = 1000;
+ solve_args.reference_temperature = 290;
+ OK(sdis_solve_probe(box_scn, &solve_args, &estimator));
+
+ OK(sdis_estimator_get_failure_count(estimator, &nfails));
+ OK(sdis_estimator_get_temperature(estimator, &temperature));
+ printf("Temperature at (%g, %g, %g) m at %g s = %g ~ %g +/- %g\n",
+ SPLIT3(probe), time[0], Tref, temperature.E, temperature.SE);
+ printf("#failures = %lu/%lu\n",
+ (unsigned long)nfails, (unsigned long)nrealisations);
+ CHK(eq_eps(Tref, temperature.E, temperature.SE*3));
+ OK(sdis_estimator_ref_put(estimator));
+
+ /* Run simulation on split scene */
+ OK(sdis_solve_probe(box2_scn, &solve_args, &estimator));
+ OK(sdis_estimator_get_failure_count(estimator, &nfails));
+ OK(sdis_estimator_get_temperature(estimator, &temperature));
+ printf("Temperature at (%g, %g, %g) m at %g s = %g ~ %g +/- %g\n",
+ SPLIT3(probe), time[0], Tref, temperature.E, temperature.SE);
+ printf("#failures = %lu/%lu\n",
+ (unsigned long)nfails, (unsigned long)nrealisations);
+ CHK(eq_eps(Tref, temperature.E, temperature.SE*3));
+ OK(sdis_estimator_ref_put(estimator));
+
+ OK(sdis_interface_ref_put(interfs[0]));
+ OK(sdis_interface_ref_put(interfs[1]));
+ OK(sdis_interface_ref_put(interfs[2]));
+ OK(sdis_interface_ref_put(interfs[3]));
+ OK(sdis_interface_ref_put(interfs[4]));
+ OK(sdis_interface_ref_put(interfs[5]));
+ OK(sdis_interface_ref_put(interfs[6]));
+ OK(sdis_medium_ref_put(solid));
+ OK(sdis_medium_ref_put(fluid));
+ OK(sdis_device_ref_put(dev));
+ OK(sdis_scene_ref_put(box_scn));
+ OK(sdis_scene_ref_put(box2_scn));
+
+ check_memory_allocator(&allocator);
+ mem_shutdown_proxy_allocator(&allocator);
+ CHK(mem_allocated_size() == 0);
+ return 0;
+}
diff --git a/src/test_sdis_utils.h b/src/test_sdis_utils.h
@@ -18,6 +18,7 @@
#include "sdis.h"
+#include <rsys/double33.h>
#include <rsys/mem_allocator.h>
#include <stdio.h>