commit 71401c573c36f3519de415fa788d94342d6f8dcb
parent 01ffc837ac8f1ae211ab49b3c9b6f75ea7176cdc
Author: Vincent Forest <vincent.forest@meso-star.com>
Date: Tue, 9 Oct 2018 12:18:51 +0200
Test the sdis_solve_boundary function
Diffstat:
4 files changed, 389 insertions(+), 312 deletions(-)
diff --git a/cmake/CMakeLists.txt b/cmake/CMakeLists.txt
@@ -155,7 +155,7 @@ if(NOT NO_TEST)
new_test(test_sdis_solve_probe_2d)
new_test(test_sdis_solve_probe2_2d)
new_test(test_sdis_solve_probe3_2d)
- new_test(test_sdis_solve_probe_boundary)
+ new_test(test_sdis_solve_boundary)
new_test(test_sdis_volumic_power)
# Additionnal tests
diff --git a/src/sdis_solve_Xd.h b/src/sdis_solve_Xd.h
@@ -1592,10 +1592,10 @@ XD(solve_boundary)
struct ssp_rng** rngs = NULL;
size_t i;
size_t N = 0; /* #realisations that do not fail */
+ size_t view_nprims;
double weight=0, sqr_weight=0;
int64_t irealisation;
ATOMIC res = RES_OK;
- ASSERT(scene_is_2d(scn));
if(!scn || !nrealisations || nrealisations > INT64_MAX || !primitives
|| !sides || !nprimitives || time < 0 || fp_to_meter < 0 || Tref < 0
@@ -1604,6 +1604,14 @@ XD(solve_boundary)
goto error;
}
+ SXD(scene_view_primitives_count(scn->sXd(view), &view_nprims));
+ FOR_EACH(i, 0, nprimitives) {
+ if(primitives[i] >= view_nprims) {
+ res = RES_BAD_ARG;
+ goto error;
+ }
+ }
+
/* Create the Star-XD shape of the boundary */
#if DIM == 2
res = sXd(shape_create_line_segments)(scn->dev->sXd_dev, &shape);
@@ -1668,10 +1676,6 @@ XD(solve_boundary)
if(ATOMIC_GET(&res) != RES_OK) continue; /* An error occurred */
- /* Map from boundary scene to sdis scene */
- iprim = primitives[prim.prim_id];
- side = sides[prim.prim_id];
-
/* Sample a position onto the boundary */
#if DIM == 2
res_local = s2d_scene_view_sample
@@ -1679,7 +1683,7 @@ XD(solve_boundary)
ssp_rng_canonical_float(rng),
ssp_rng_canonical_float(rng),
&prim, st);
- uv[1] = (double)st[1];
+ uv[0] = (double)st[0];
#else
res_local = s3d_scene_view_sample
(view,
@@ -1691,6 +1695,11 @@ XD(solve_boundary)
#endif
if(res_local != RES_OK) { ATOMIC_SET(&res, res_local); continue; }
+ /* Map from boundary scene to sdis scene */
+ ASSERT(prim.prim_id < nprimitives);
+ iprim = primitives[prim.prim_id];
+ side = sides[prim.prim_id];
+
/* Invoke the boundary realisation */
res_local = XD(boundary_realisation)
(scn, rng, iprim, uv, time, side, fp_to_meter, Tarad, Tref, &w);
diff --git a/src/test_sdis_solve_boundary.c b/src/test_sdis_solve_boundary.c
@@ -0,0 +1,373 @@
+/* Copyright (C) 2016-2018 |Meso|Star> (contact@meso-star.com)
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>. */
+
+#include "sdis.h"
+#include "test_sdis_utils.h"
+
+#include <rsys/math.h>
+
+/*
+ * The scene is composed of a solid cube/square whose temperature is unknown.
+ * The convection coefficient with the surrounding fluid is null exepted for
+ * the +X face whose value is 'H'. The Temperature of the -X face is fixed to
+ * Tb. This test computes the temperature on the +X face and check that it is
+ * equal to:
+ *
+ * T = (H*Tf + LAMBDA/A * Tb) / (H+LAMBDA/A)
+ *
+ * with Tf the temperature of the surrounding fluid, lambda the conductivity of
+ * the cube and A the size of the cube/square, i.e. 1.
+ *
+ * 3D 2D
+ *
+ * ///// (1,1,1) ///// (1,1)
+ * +-------+ +-------+
+ * /' /| _\ | | _\
+ * +-------+ | / / Tf Tb | / / Tf
+ * Tb +.....|.+ \__/ | | \__/
+ * |, |/ +-------+
+ * +-------+ (0,0) /////
+ * (0,0,0) /////
+ */
+
+#define UNKNOWN_TEMPERATURE -1
+#define N 10000 /* #realisations */
+
+#define Tf 310.0
+#define Tb 300.0
+#define H 0.5
+#define LAMBDA 0.1
+
+/*******************************************************************************
+ * Media
+ ******************************************************************************/
+static double
+fluid_get_temperature
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ (void)data;
+ CHK(vtx != NULL);
+ return Tf;
+}
+
+static double
+solid_get_calorific_capacity
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ (void)data;
+ CHK(vtx != NULL);
+ return 2.0;
+}
+
+static double
+solid_get_thermal_conductivity
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ (void)data;
+ CHK(vtx != NULL);
+ return LAMBDA;
+}
+
+static double
+solid_get_volumic_mass
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ (void)data;
+ CHK(vtx != NULL);
+ return 25.0;
+}
+
+static double
+solid_get_delta
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ (void)data;
+ CHK(vtx != NULL);
+ return 1.0/20.0;
+}
+
+static double
+solid_get_temperature
+ (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
+{
+ (void)data;
+ CHK(vtx != NULL);
+ return UNKNOWN_TEMPERATURE;
+}
+
+/*******************************************************************************
+ * Interfaces
+ ******************************************************************************/
+struct interf {
+ double temperature;
+ double hc;
+};
+
+static double
+interface_get_temperature
+ (const struct sdis_interface_fragment* frag, struct sdis_data* data)
+{
+ const struct interf* interf = sdis_data_cget(data);
+ CHK(frag && data);
+ return interf->temperature;
+}
+
+static double
+interface_get_convection_coef
+ (const struct sdis_interface_fragment* frag, struct sdis_data* data)
+{
+ const struct interf* interf = sdis_data_cget(data);
+ CHK(frag && data);
+ return interf->hc;
+}
+
+/*******************************************************************************
+ * Helper function
+ ******************************************************************************/
+static void
+check_estimator
+ (const struct sdis_estimator* estimator,
+ const size_t nrealisations, /* #realisations */
+ const double ref)
+{
+ struct sdis_mc T = SDIS_MC_NULL;
+ size_t nreals;
+ size_t nfails;
+ CHK(estimator && nrealisations);
+
+ CHK(sdis_estimator_get_temperature(estimator, &T) == RES_OK);
+ CHK(sdis_estimator_get_realisation_count(estimator, &nreals) == RES_OK);
+ CHK(sdis_estimator_get_failure_count(estimator, &nfails) == RES_OK);
+ printf("%g ~ %g +/- %g\n", ref, T.E, T.SE);
+ printf("#failures = %lu/%lu\n",
+ (unsigned long)nfails, (unsigned long)nrealisations);
+ CHK(nfails + nreals == nrealisations);
+ CHK(nfails < N/1000);
+ CHK(eq_eps(T.E, ref, 3*T.SE));
+}
+
+/*******************************************************************************
+ * Test
+ ******************************************************************************/
+int
+main(int argc, char** argv)
+{
+ struct mem_allocator allocator;
+ struct sdis_data* data = NULL;
+ struct sdis_device* dev = NULL;
+ struct sdis_medium* fluid = NULL;
+ struct sdis_medium* solid = NULL;
+ struct sdis_interface* interf_adiabatic = NULL;
+ struct sdis_interface* interf_Tb = NULL;
+ struct sdis_interface* interf_H = NULL;
+ struct sdis_scene* box_scn = NULL;
+ struct sdis_scene* square_scn = NULL;
+ struct sdis_estimator* estimator = NULL;
+ struct sdis_fluid_shader fluid_shader = DUMMY_FLUID_SHADER;
+ struct sdis_solid_shader solid_shader = DUMMY_SOLID_SHADER;
+ struct sdis_interface_shader interf_shader = SDIS_INTERFACE_SHADER_NULL;
+ struct sdis_interface* box_interfaces[12 /*#triangles*/];
+ struct sdis_interface* square_interfaces[4/*#segments*/];
+ struct interf* interf_props = NULL;
+ double uv[2];
+ double pos[3];
+ double ref;
+ size_t prims[4];
+ enum sdis_side sides[4];
+ size_t iprim;
+ (void)argc, (void)argv;
+
+ CHK(mem_init_proxy_allocator(&allocator, &mem_default_allocator) == RES_OK);
+ CHK(sdis_device_create
+ (NULL, &allocator, SDIS_NTHREADS_DEFAULT, 1, &dev) == RES_OK);
+
+ /* Create the fluid medium */
+ fluid_shader.temperature = fluid_get_temperature;
+ CHK(sdis_fluid_create(dev, &fluid_shader, NULL, &fluid) == RES_OK);
+
+ /* Create the solid_medium */
+ solid_shader.calorific_capacity = solid_get_calorific_capacity;
+ solid_shader.thermal_conductivity = solid_get_thermal_conductivity;
+ solid_shader.volumic_mass = solid_get_volumic_mass;
+ solid_shader.delta_solid = solid_get_delta;
+ solid_shader.temperature = solid_get_temperature;
+ CHK(sdis_solid_create(dev, &solid_shader, NULL, &solid) == RES_OK);
+
+ /* Setup the interface shader */
+ interf_shader.convection_coef = interface_get_convection_coef;
+ interf_shader.front.temperature = interface_get_temperature;
+ interf_shader.front.emissivity = NULL;
+ interf_shader.front.specular_fraction = NULL;
+ interf_shader.back = SDIS_INTERFACE_SIDE_SHADER_NULL;
+
+ /* Create the adiabatic interface */
+ CHK(sdis_data_create(dev, sizeof(struct interf), 16, NULL, &data) == RES_OK);
+ interf_props = sdis_data_get(data);
+ interf_props->hc = 0;
+ interf_props->temperature = UNKNOWN_TEMPERATURE;
+ CHK(sdis_interface_create
+ (dev, solid, fluid, &interf_shader, data, &interf_adiabatic) == RES_OK);
+ CHK(sdis_data_ref_put(data) == RES_OK);
+
+ /* Create the Tb interface */
+ CHK(sdis_data_create(dev, sizeof(struct interf), 16, NULL, &data) == RES_OK);
+ interf_props = sdis_data_get(data);
+ interf_props->hc = 0;
+ interf_props->temperature = Tb;
+ CHK(sdis_interface_create
+ (dev, solid, fluid, &interf_shader, data, &interf_Tb) == RES_OK);
+ CHK(sdis_data_ref_put(data) == RES_OK);
+
+ /* Create the H interface */
+ CHK(sdis_data_create(dev, sizeof(struct interf), 16, NULL, &data) == RES_OK);
+ interf_props = sdis_data_get(data);
+ interf_props->hc = H;
+ interf_props->temperature = UNKNOWN_TEMPERATURE;
+ CHK(sdis_interface_create
+ (dev, solid, fluid, &interf_shader, data, &interf_H) == RES_OK);
+ CHK(sdis_data_ref_put(data) == RES_OK);
+
+ /* Release the media */
+ CHK(sdis_medium_ref_put(solid) == RES_OK);
+ CHK(sdis_medium_ref_put(fluid) == RES_OK);
+
+ /* Map the interfaces to their box triangles */
+ box_interfaces[0] = box_interfaces[1] = interf_adiabatic; /* Front */
+ box_interfaces[2] = box_interfaces[3] = interf_Tb; /* Left */
+ box_interfaces[4] = box_interfaces[5] = interf_adiabatic; /* Back */
+ box_interfaces[6] = box_interfaces[7] = interf_H; /* Right */
+ box_interfaces[8] = box_interfaces[9] = interf_adiabatic; /* Top */
+ box_interfaces[10]= box_interfaces[11]= interf_adiabatic; /* Bottom */
+
+ /* Map the interfaces to their square segments */
+ square_interfaces[0] = interf_adiabatic; /* Bottom */
+ square_interfaces[1] = interf_Tb; /* Lef */
+ square_interfaces[2] = interf_adiabatic; /* Top */
+ square_interfaces[3] = interf_H; /* Right */
+
+ /* Create the box scene */
+ CHK(sdis_scene_create(dev, box_ntriangles, box_get_indices,
+ box_get_interface, box_nvertices, box_get_position, box_interfaces,
+ &box_scn) == RES_OK);
+
+ /* Create the square scene */
+ CHK(sdis_scene_2d_create(dev, square_nsegments, square_get_indices,
+ square_get_interface, square_nvertices, square_get_position,
+ square_interfaces, &square_scn) == RES_OK);
+
+ /* Release the interfaces */
+ CHK(sdis_interface_ref_put(interf_adiabatic) == RES_OK);
+ CHK(sdis_interface_ref_put(interf_Tb) == RES_OK);
+ CHK(sdis_interface_ref_put(interf_H) == RES_OK);
+
+ ref = (H*Tf + LAMBDA * Tb) / (H + LAMBDA);
+
+ #define SOLVE sdis_solve_probe_boundary
+ #define F SDIS_FRONT
+ uv[0] = 0.3;
+ uv[1] = 0.3;
+ iprim = 6;
+
+ CHK(SOLVE(NULL, N, iprim, uv, INF, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, 0, iprim, uv, INF, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, 12, uv, INF, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, iprim, NULL, INF, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, iprim, uv, -1, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, iprim, uv, INF, -1, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, iprim, uv, INF, F, 1.0, 0, 0, NULL) == RES_BAD_ARG);
+
+ CHK(SOLVE(box_scn, N, iprim, uv, INF, F, 1.0, 0, 0, &estimator) == RES_OK);
+ CHK(sdis_scene_get_boundary_position(box_scn, iprim, uv, pos) == RES_OK);
+ printf("Boundary temperature of the box at (%g %g %g) = ", SPLIT3(pos));
+ check_estimator(estimator, N, ref);
+ CHK(sdis_estimator_ref_put(estimator) == RES_OK);
+
+ uv[0] = 0.5;
+ iprim = 3;
+ CHK(SOLVE(square_scn, N, iprim, uv, INF, F, 1.0, 0, 0, &estimator) == RES_OK);
+ CHK(sdis_scene_get_boundary_position(square_scn, iprim, uv, pos) == RES_OK);
+ printf("Boundary temperature of the square at (%g %g) = ", SPLIT2(pos));
+ check_estimator(estimator, N, ref);
+ CHK(sdis_estimator_ref_put(estimator) == RES_OK);
+ #undef F
+ #undef SOLVE
+
+ sides[0] = SDIS_FRONT;
+ sides[1] = SDIS_FRONT;
+ sides[2] = SDIS_FRONT;
+ sides[3] = SDIS_FRONT;
+
+ #define SOLVE sdis_solve_boundary
+ prims[0] = 6;
+ prims[1] = 7;
+ CHK(SOLVE(NULL, N, prims, sides, 2, INF, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, 0, prims, sides, 2, INF, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, NULL, sides, 2, INF, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, prims, NULL, 2, INF, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, prims, sides, 0, INF, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, prims, sides, 2, -1, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ CHK(SOLVE(box_scn, N, prims, sides, 2, INF, 1.0, 0, 0, NULL) == RES_BAD_ARG);
+
+ /* Average temperature on the right side of the box */
+ CHK(SOLVE(box_scn, N, prims, sides, 2, INF, 1.0, 0, 0, &estimator) == RES_OK);
+ printf("Average temperature of the right side of the box = ");
+ check_estimator(estimator, N, ref);
+ CHK(sdis_estimator_ref_put(estimator) == RES_OK);
+
+ /* Average temperature on the right side of the square */
+ prims[0] = 3;
+ sides[0] = SDIS_FRONT;
+ CHK(SOLVE(square_scn, N, prims, sides, 1, INF, 1.0, 0, 0, &estimator) == RES_OK);
+ printf("Average temperature of the right side of the square = ");
+ check_estimator(estimator, N, ref);
+ CHK(sdis_estimator_ref_put(estimator) == RES_OK);
+
+ /* Check out of bound prims */
+ prims[0] = 12;
+ CHK(SOLVE(box_scn, N, prims, sides, 2, INF, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+ prims[0] = 4;
+ CHK(SOLVE(square_scn, N, prims, sides, 1, INF, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
+
+ ref = (ref + Tb) / 2;
+
+ /* Average temperature on the left/right side of the box */
+ prims[0] = 2;
+ prims[1] = 3;
+ prims[2] = 6;
+ prims[3] = 7;
+ CHK(SOLVE(box_scn, N, prims, sides, 4, INF, 1.0, 0, 0, &estimator) == RES_OK);
+ printf("Average temperature of the right/left side of the box = ");
+ check_estimator(estimator, N, ref);
+ CHK(sdis_estimator_ref_put(estimator) == RES_OK);
+
+ /* Average temperature on the left/right side of the square */
+ prims[0] = 1;
+ prims[1] = 3;
+ CHK(SOLVE(square_scn, N, prims, sides, 2, INF, 1.0, 0, 0, &estimator) == RES_OK);
+ printf("Average temperature of the right/left side of the square = ");
+ check_estimator(estimator, N, ref);
+ CHK(sdis_estimator_ref_put(estimator) == RES_OK);
+ #undef sdis_solve_boundary
+
+ CHK(sdis_scene_ref_put(box_scn) == RES_OK);
+ CHK(sdis_scene_ref_put(square_scn) == RES_OK);
+ CHK(sdis_device_ref_put(dev) == RES_OK);
+
+ check_memory_allocator(&allocator);
+ mem_shutdown_proxy_allocator(&allocator);
+ CHK(mem_allocated_size() == 0);
+ return 0;
+}
+
diff --git a/src/test_sdis_solve_probe_boundary.c b/src/test_sdis_solve_probe_boundary.c
@@ -1,305 +0,0 @@
-/* Copyright (C) 2016-2018 |Meso|Star> (contact@meso-star.com)
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>. */
-
-#include "sdis.h"
-#include "test_sdis_utils.h"
-
-#include <rsys/math.h>
-
-/*
- * The scene is composed of a solid cube/square whose temperature is unknown.
- * The convection coefficient with the surrounding fluid is null exepted for
- * the +X face whose value is 'H'. The Temperature of the -X face is fixed to
- * Tb. This test computes the temperature on the +X face and check that it is
- * equal to:
- *
- * T = (H*Tf + LAMBDA/A * Tb) / (H+LAMBDA/A)
- *
- * with Tf the temperature of the surrounding fluid, lambda the conductivity of
- * the cube and A the size of the cube/square, i.e. 1.
- *
- * 3D 2D
- *
- * ///// (1,1,1) ///// (1,1)
- * +-------+ +-------+
- * /' /| _\ | | _\
- * +-------+ | / / Tf Tb | / / Tf
- * Tb +.....|.+ \__/ | | \__/
- * |, |/ +-------+
- * +-------+ (0,0) /////
- * (0,0,0) /////
- */
-
-#define UNKNOWN_TEMPERATURE -1
-#define N 10000 /* #realisations */
-
-#define Tf 310
-#define Tb 300
-#define H 0.5
-#define LAMBDA 0.1
-
-/*******************************************************************************
- * Media
- ******************************************************************************/
-static double
-fluid_get_temperature
- (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
-{
- (void)data;
- CHK(vtx != NULL);
- return Tf;
-}
-
-static double
-solid_get_calorific_capacity
- (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
-{
- (void)data;
- CHK(vtx != NULL);
- return 2.0;
-}
-
-static double
-solid_get_thermal_conductivity
- (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
-{
- (void)data;
- CHK(vtx != NULL);
- return LAMBDA;
-}
-
-static double
-solid_get_volumic_mass
- (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
-{
- (void)data;
- CHK(vtx != NULL);
- return 25.0;
-}
-
-static double
-solid_get_delta
- (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
-{
- (void)data;
- CHK(vtx != NULL);
- return 1.0/20.0;
-}
-
-static double
-solid_get_temperature
- (const struct sdis_rwalk_vertex* vtx, struct sdis_data* data)
-{
- (void)data;
- CHK(vtx != NULL);
- return UNKNOWN_TEMPERATURE;
-}
-
-/*******************************************************************************
- * Interfaces
- ******************************************************************************/
-struct interf {
- double temperature;
- double hc;
-};
-
-static double
-interface_get_temperature
- (const struct sdis_interface_fragment* frag, struct sdis_data* data)
-{
- const struct interf* interf = sdis_data_cget(data);
- CHK(frag && data);
- return interf->temperature;
-}
-
-static double
-interface_get_convection_coef
- (const struct sdis_interface_fragment* frag, struct sdis_data* data)
-{
- const struct interf* interf = sdis_data_cget(data);
- CHK(frag && data);
- return interf->hc;
-}
-
-/*******************************************************************************
- * Test
- ******************************************************************************/
-int
-main(int argc, char** argv)
-{
- struct mem_allocator allocator;
- struct sdis_mc T = SDIS_MC_NULL;
- struct sdis_data* data = NULL;
- struct sdis_device* dev = NULL;
- struct sdis_medium* fluid = NULL;
- struct sdis_medium* solid = NULL;
- struct sdis_interface* interf_adiabatic = NULL;
- struct sdis_interface* interf_Tb = NULL;
- struct sdis_interface* interf_H = NULL;
- struct sdis_scene* box_scn = NULL;
- struct sdis_scene* square_scn = NULL;
- struct sdis_estimator* estimator = NULL;
- struct sdis_fluid_shader fluid_shader = DUMMY_FLUID_SHADER;
- struct sdis_solid_shader solid_shader = DUMMY_SOLID_SHADER;
- struct sdis_interface_shader interf_shader = SDIS_INTERFACE_SHADER_NULL;
- struct sdis_interface* box_interfaces[12 /*#triangles*/];
- struct sdis_interface* square_interfaces[4/*#segments*/];
- struct interf* interf_props = NULL;
- double uv[2];
- double pos[3];
- double ref;
- size_t iprim;
- size_t nreals;
- size_t nfails;
- (void)argc, (void)argv;
-
- CHK(mem_init_proxy_allocator(&allocator, &mem_default_allocator) == RES_OK);
- CHK(sdis_device_create
- (NULL, &allocator, SDIS_NTHREADS_DEFAULT, 1, &dev) == RES_OK);
-
- /* Create the fluid medium */
- fluid_shader.temperature = fluid_get_temperature;
- CHK(sdis_fluid_create(dev, &fluid_shader, NULL, &fluid) == RES_OK);
-
- /* Create the solid_medium */
- solid_shader.calorific_capacity = solid_get_calorific_capacity;
- solid_shader.thermal_conductivity = solid_get_thermal_conductivity;
- solid_shader.volumic_mass = solid_get_volumic_mass;
- solid_shader.delta_solid = solid_get_delta;
- solid_shader.temperature = solid_get_temperature;
- CHK(sdis_solid_create(dev, &solid_shader, NULL, &solid) == RES_OK);
-
- /* Setup the interface shader */
- interf_shader.convection_coef = interface_get_convection_coef;
- interf_shader.front.temperature = interface_get_temperature;
- interf_shader.front.emissivity = NULL;
- interf_shader.front.specular_fraction = NULL;
- interf_shader.back = SDIS_INTERFACE_SIDE_SHADER_NULL;
-
- /* Create the adiabatic interface */
- CHK(sdis_data_create(dev, sizeof(struct interf), 16, NULL, &data) == RES_OK);
- interf_props = sdis_data_get(data);
- interf_props->hc = 0;
- interf_props->temperature = UNKNOWN_TEMPERATURE;
- CHK(sdis_interface_create
- (dev, solid, fluid, &interf_shader, data, &interf_adiabatic) == RES_OK);
- CHK(sdis_data_ref_put(data) == RES_OK);
-
- /* Create the Tb interface */
- CHK(sdis_data_create(dev, sizeof(struct interf), 16, NULL, &data) == RES_OK);
- interf_props = sdis_data_get(data);
- interf_props->hc = 0;
- interf_props->temperature = Tb;
- CHK(sdis_interface_create
- (dev, solid, fluid, &interf_shader, data, &interf_Tb) == RES_OK);
- CHK(sdis_data_ref_put(data) == RES_OK);
-
- /* Create the H interface */
- CHK(sdis_data_create(dev, sizeof(struct interf), 16, NULL, &data) == RES_OK);
- interf_props = sdis_data_get(data);
- interf_props->hc = H;
- interf_props->temperature = UNKNOWN_TEMPERATURE;
- CHK(sdis_interface_create
- (dev, solid, fluid, &interf_shader, data, &interf_H) == RES_OK);
- CHK(sdis_data_ref_put(data) == RES_OK);
-
- /* Release the media */
- CHK(sdis_medium_ref_put(solid) == RES_OK);
- CHK(sdis_medium_ref_put(fluid) == RES_OK);
-
- /* Map the interfaces to their box triangles */
- box_interfaces[0] = box_interfaces[1] = interf_adiabatic; /* Front */
- box_interfaces[2] = box_interfaces[3] = interf_Tb; /* Left */
- box_interfaces[4] = box_interfaces[5] = interf_adiabatic; /* Back */
- box_interfaces[6] = box_interfaces[7] = interf_H; /* Right */
- box_interfaces[8] = box_interfaces[9] = interf_adiabatic; /* Top */
- box_interfaces[10]= box_interfaces[11]= interf_adiabatic; /* Bottom */
-
- /* Map the interfaces to their square segments */
- square_interfaces[0] = interf_adiabatic; /* Bottom */
- square_interfaces[1] = interf_Tb; /* Lef */
- square_interfaces[2] = interf_adiabatic; /* Top */
- square_interfaces[3] = interf_H; /* Right */
-
- /* Create the box scene */
- CHK(sdis_scene_create(dev, box_ntriangles, box_get_indices,
- box_get_interface, box_nvertices, box_get_position, box_interfaces,
- &box_scn) == RES_OK);
-
- /* Create the square scene */
- CHK(sdis_scene_2d_create(dev, square_nsegments, square_get_indices,
- square_get_interface, square_nvertices, square_get_position,
- square_interfaces, &square_scn) == RES_OK);
-
- /* Release the interfaces */
- CHK(sdis_interface_ref_put(interf_adiabatic) == RES_OK);
- CHK(sdis_interface_ref_put(interf_Tb) == RES_OK);
- CHK(sdis_interface_ref_put(interf_H) == RES_OK);
-
- uv[0] = 0.3;
- uv[1] = 0.3;
- iprim = 6;
-
- #define SOLVE sdis_solve_probe_boundary
- #define F SDIS_FRONT
- CHK(SOLVE(NULL, N, iprim, uv, INF, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
- CHK(SOLVE(box_scn, 0, iprim, uv, INF, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
- CHK(SOLVE(box_scn, N, 12, uv, INF, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
- CHK(SOLVE(box_scn, N, iprim, NULL, INF, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
- CHK(SOLVE(box_scn, N, iprim, uv, -1, F, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
- CHK(SOLVE(box_scn, N, iprim, uv, INF, -1, 1.0, 0, 0, &estimator) == RES_BAD_ARG);
- CHK(SOLVE(box_scn, N, iprim, uv, INF, F, 1.0, 0, 0, NULL) == RES_BAD_ARG);
- CHK(SOLVE(box_scn, N, iprim, uv, INF, F, 1.0, 0, 0, &estimator) == RES_OK);
-
- ref = (H*Tf + LAMBDA * Tb) / (H + LAMBDA);
-
- CHK(sdis_estimator_get_realisation_count(estimator, &nreals) == RES_OK);
- CHK(sdis_estimator_get_failure_count(estimator, &nfails) == RES_OK);
- CHK(sdis_estimator_get_temperature(estimator, &T) == RES_OK);
- CHK(sdis_estimator_ref_put(estimator) == RES_OK);
- CHK(sdis_scene_get_boundary_position(box_scn, iprim, uv, pos) == RES_OK);
- printf("Boundary temperature of the box at (%g %g %g) = %g ~ %g +/- %g\n",
- SPLIT3(pos), ref, T.E, T.SE);
- printf("#failures = %lu/%lu\n", (unsigned long)nfails, (unsigned long)N);
- CHK(nfails + nreals == N);
- CHK(nfails < N/1000);
- CHK(eq_eps(T.E, ref, 3*T.SE));
-
- uv[0] = 0.5;
- iprim = 3;
- CHK(SOLVE(square_scn, N, iprim, uv, INF, F, 1.0, 0, 0, &estimator) == RES_OK);
- CHK(sdis_estimator_get_realisation_count(estimator, &nreals) == RES_OK);
- CHK(sdis_estimator_get_failure_count(estimator, &nfails) == RES_OK);
- CHK(sdis_estimator_get_temperature(estimator, &T) == RES_OK);
- CHK(sdis_estimator_ref_put(estimator) == RES_OK);
- CHK(sdis_scene_get_boundary_position(square_scn, iprim, uv, pos) == RES_OK);
- printf("Boundary temperature of the square at (%g %g) = %g ~ %g +/- %g\n",
- SPLIT2(pos), ref, T.E, T.SE);
- printf("#failures = %lu/%lu\n", (unsigned long)nfails, (unsigned long)N);
- CHK(nfails + nreals == N);
- CHK(nfails < N/1000);
- CHK(eq_eps(T.E, ref, 3*T.SE));
- #undef SOLVE
-
- CHK(sdis_scene_ref_put(box_scn) == RES_OK);
- CHK(sdis_scene_ref_put(square_scn) == RES_OK);
- CHK(sdis_device_ref_put(dev) == RES_OK);
-
- check_memory_allocator(&allocator);
- mem_shutdown_proxy_allocator(&allocator);
- CHK(mem_allocated_size() == 0);
- return 0;
-}
-