commit e40ba6ed44cc567c4d9cf9923d5153a2faaec319
parent 5b8031a1d91b5e6bd9685a4a246ff7be8c88a375
Author: Vincent Forest <vincent.forest@meso-star.com>
Date: Tue, 23 Feb 2021 12:17:23 +0100
Fix the layout of the stardis overview page
Diffstat:
1 file changed, 12 insertions(+), 12 deletions(-)
diff --git a/stardis/stardis.html.in b/stardis/stardis.html.in
@@ -173,6 +173,18 @@ on the following hypothesis:</p>
<p>The remaining of this section describes the main functionalities provided by
Stardis-Solver upon the aforementioned hypothesis.</p>
+<div class="img" style="width: 18em;">
+ <a href="step.svg"><img src="step.svg" alt="step"></a>
+ <a href="sin.svg"><img src="sin.svg" alt="sin"></a>
+ <a href="pulse.svg"><img src="pulse.svg" alt="pulse"></a>
+ <div class="caption">
+ Temporal dynamics analysis of a solid cube which has temperatures imposed on
+ its left and right sides, and has adiabatic boundaries elsewhere. The
+ center temperature is the result of a simple postprocess of a <b>single
+ Monte-Carlo computation</b>.
+ </div>
+</div>
+
<h3>Probe computation</h3>
<p>Stardis-Solver computes the temperature at any given position (spatial and
@@ -200,18 +212,6 @@ additional contributions to the weight must be continuously evaluated by the
thermal conduction algorithm, but these contributions are proportional to the
local dissipated power and imposed flux.</p>
-<div class="img" style="width: 18em;">
- <a href="step.svg"><img src="step.svg" alt="step"></a>
- <a href="sin.svg"><img src="sin.svg" alt="sin"></a>
- <a href="pulse.svg"><img src="pulse.svg" alt="pulse"></a>
- <div class="caption">
- Temporal dynamics analysis of a solid cube which has temperatures imposed on
- its left and right sides, and has adiabatic boundaries elsewhere. The
- center temperature is the result of a simple postprocess of a <b>single
- Monte-Carlo computation</b>.
- </div>
-</div>
-
<p>In any case, the position and date at the end of each thermal path (and also
accumulation coefficients) can be stored during a first complete Monte-Carlo
simulation. This information, known as the Green function, can then be used in a