meso-web

Sources of the |Méso|Star> website
git clone git://git.meso-star.fr/meso-web.git
Log | Files | Refs | README | LICENSE

commit 6c8ced4212231d97bd0301306a245ebdb26e1cd5
parent 4e303954a4dfd6be518889546c4c53c87d76d063
Author: Vincent Forest <vincent.forest@meso-star.com>
Date:   Fri, 14 Apr 2023 17:09:53 +0200

stardis: add a validation page

This page lists the references toward the articles that perform cross
comparision with deterministics code. It also underlines the tests of
stardis solver used for validation. Finally, it presents a
cross-comparision with SYRTHES.

Diffstat:
Mstardis/.gitignore | 1+
Mstardis/Makefile | 17++++++++++++++++-
Astardis/TprofX.png | 2++
Astardis/TprofY.png | 2++
Astardis/geometry.svg | 2++
Mstardis/stardis_build.sh | 7+++++++
Astardis/temperature.png | 2++
Astardis/validation.html.in | 146+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
8 files changed, 178 insertions(+), 1 deletion(-)

diff --git a/stardis/.gitignore b/stardis/.gitignore @@ -8,3 +8,4 @@ stardis-green-release-notes.html.in starter-pack.html Stardis-*-GNU-Linux64/ Stardis-Starter-Pack-*/ +validation.html diff --git a/stardis/Makefile b/stardis/Makefile @@ -74,12 +74,19 @@ STARTER_PACK_IMG=\ IR_animation_1080x720x32x128_thumb.gif\ IR_city_640x480x1024_273-275.png +VALIDATION_IMG=\ + geometry.svg\ + temperature.png\ + TprofX.png\ + TprofY.png + HTML=\ consortium-fr.html\ consortium-en.html\ stardis.html\ stardis-downloads.html\ - starter-pack.html + starter-pack.html\ + validation.html build: .sig .man @$(MAKE) -fMakefile -f .sig -f .man build_all @@ -113,6 +120,7 @@ install: build $(STARDIS_SIG)\ $(STARTER_PACK_PKG)\ $(STARTER_PACK_SIG)\ + $(VALIDATION_IMG)\ $$(find man -name "*.html")\ $(PREFIX)/stardis/ @@ -131,6 +139,13 @@ stardis.html:\ @$(SHELL) stardis_build.sh overview $(STARDIS_VERSION) > $@ ################################################################################ +# Validation web page +################################################################################ +validation.html: validation.html.in $(VALIDATION_IMG) stardis_build.sh Makefile + @echo "Building $@" + @$(SHELL) stardis_build.sh validation > $@ + +################################################################################ # Consortium web pages ################################################################################ consortium-fr.html: consortium-fr.html.in edf_logo.svg stardis_build.sh diff --git a/stardis/TprofX.png b/stardis/TprofX.png @@ -0,0 +1 @@ +#$# git-wad fbb4d1319a2bb75d23f02dc0cb7b49a2d76526d53fd37de7d9d10ae2276539bf 24132 +\ No newline at end of file diff --git a/stardis/TprofY.png b/stardis/TprofY.png @@ -0,0 +1 @@ +#$# git-wad 563b52a2dc809ef8ce7c793ed0e848c37391fbb46693ebb7a09f09f160a6a977 24249 +\ No newline at end of file diff --git a/stardis/geometry.svg b/stardis/geometry.svg @@ -0,0 +1 @@ +#$# git-wad 3b881887ec76fdf74316bcbd75ba294c45e3bc829236b376e723381080d192be 43632 +\ No newline at end of file diff --git a/stardis/stardis_build.sh b/stardis/stardis_build.sh @@ -29,6 +29,13 @@ overview() print_footer } +validation() +{ + print_header -s Stardis -n Validation -r ../ + cat validation.html.in + print_footer +} + consortium() { if [ $# -lt 1 ]; then diff --git a/stardis/temperature.png b/stardis/temperature.png @@ -0,0 +1 @@ +#$# git-wad 959a88f11c0ed4ffcdb0d2cd123c83b93a0f6bcb9c25678a810295d65fdb61fb 31074 +\ No newline at end of file diff --git a/stardis/validation.html.in b/stardis/validation.html.in @@ -0,0 +1,146 @@ +<h1>Validation</h1> + +<p>In this webpage, we provide the references to validations of the Stardis +code and the theoretical framework it is based on. We first present the +validations against analytical models and then against finite differences +codes.</p> + +<h2>Comparison against analytical results</h2> + +<p>Stardis provides comparisons against analytical solutions. These +non-regression tests are available in the <code>src/</code> directory of <a +href="https://gitlab.com/meso-star/stardis-solver/-/tree/master/src">Stardis +Solver</a> (denoted by <code>test_*</code>). Note that the tests are performed +on the direct Monte Carlo simulation and the propagator (path-replay with +different conditions) when possible. For each test, the scene geometry and +physical parameters are described in the header. Among these, we note the +following tests:</p> + +<ul> + <li><a + href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_conducto_radiative.c">test_sdis_conducto_radiative.c</a> + validates the steady resolution of the coupled conduction and radiative + transfer in a solid surrounded by two different fluids (left/right + faces);</li> + <li><a + href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_convection_non_uniform.c">test_sdis_convection_non_uniform.c</a> + validates the transient resolution of the convection for a fluid inside a cube + with faces of different known temperatures;</li> + <li><a + href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_transcient.c">test_sdis_transient.c</a> + validates the transient resolution of conduction in nested cubes;</li> + <li><a + href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_solve_boundary.c">test_sdis_solve_boundary.c</a> + validates the steady computation of the boundary temperature on a solid cube + interfaced with a fluid with known temperature;</li> + <li><a + href="https://gitlab.com/meso-star/stardis-solver/-/blob/master/src/test_sdis_solid_random_walk_robustness.c">test_random_walk_robustness.c</a> + validates the random walk in a solid with / without a source term in complex + geometry;</li> +</ul> + +<h2>Cross-comparison against deterministic solvers</h2> + +<p>Stardis is also validated against usual deterministic codes, on more complex +geometries where no analytical solution exists. We list here the academic +papers which include such validations and provide a description of the +configuration and mention the code used for comparison.</p> + +<ol> + <li><a href="https://hal.science/hal-03518455v2">Penazzi et al.</a>&nbsp;- + Path integral formulations leading to propagator evaluation for coupled + linear physics in large geometric models. Preprint 2022. Appendix C. + <ul> + <li>Validation against + COMSOL<sup><a href="https://www.comsol.fr/">1</a></sup> + </li> + <li>Solid with fluid cavities</li> + <li>Coupled conduction, convection (perfectly mixed cavity) and radiation; + homogeneous coefficients</li> + <li>Stationnary state</li> + <li>Validation of the propagator</li> + </ul></li> + + <li><a href="https://hal.science/hal-03818899v2">Ibarrart et al.</a>&nbsp;- + Advection, diffusion and linear transport in a single path-sampling + Monte-Carlo algorithm: getting insensitive to geometrical refinement. + Preprint 2022. Figures F.9 and F.10. + <ul> + <li>Validation against + COMSOL<sup><a href="https://www.comsol.fr/">1</a></sup> + or + ANSYS&nbsp;Fluent<sup><a href="https://www.ansys.com/products/fluids/ansys-fluent">2</a></sup> + </li> + <li>Poiseille duct or Kelvin cells</li> + <li>Coupled conduction, convection (with advection) and radiative transfer; + homogeneous coefficients</li> + <li>Stationnary state</li> + </ul></li> + + <li><a href="https://hal.science/hal-02096305v1">Caliot et al.</a>&nbsp;- + Combined conductive-radiative heat transfer analysis in complex geometry + using the Monte Carlo method. Eurotherm 2018. Figures 6 to 9. + <ul> + <li>Validation against + ANSYS&nbsp;Fluent<sup><a href="https://www.ansys.com/products/fluids/ansys-fluent">2</a></sup> + </li> + <li>Kelvin cells</li> + <li>Coupled conduction and radiative transfer</li> + <li>Stationnary state</li> + </ul></li> + + <li><a href="https://hal.science/hal-04059892">Retailleau et al.</a>&nbsp;- + Résolution d’un problème de transferts thermiques couplés en géométrie + urbaine par la méthode Monte Carlo. In SFT 2023. Figure 4. + <ul> + <li>Validation against finite differences</li> + <li>Slab with Robin conditions</li> + <li>Coupled conduction, convection (perfectly mixed cell) and radiative transfer</li> + <li>unstationnary state</li> + </ul></li> +</ol> + +<h3>Stardis in SYRTHES</h3> + +<p>Stardis is used in the <a +href="https://www.edf.fr/en/the-edf-group/inventing-the-future-of-energy/r-d-global-expertise/our-offers/simulation-softwares/syrthes">SYRTHES</a> +code of the French electric company Électricité de France. Both deterministic +and stochastic resolutions can therefore be compared on the exact same CAD +input. Here we provide the validation on one stationnary test case of +conduction inside a cube (figure 1). Both the finite elements and the Monte +Carlo (using Stardis) resolutions are compared to the theoretical temperature +(figure 2).</p> + +<div class="img" style="text-align: center"> + <img src="geometry.svg" alt="geometry" style="width: 45%"> + <a href="temperature.png"> + <img src="temperature.png" alt="temperature" style="width: 40%"> + </a> + <div class="caption"> + <b>Figure 1:</b> The left figure describes the configuration of the test + case. The system to be simulated is a solid square with one edge having a + known temperature. Another edge has a convective exchange with a fluid whose + temperature is also known. The two other edges are adiabatic. The right image + illustrates the temperature field corresponding to this configuration at + steady state. + </div> +</div> + +<div class="img" style="text-align: center"> + <a href="TprofY.png"> + <img src="TprofY.png" alt="ProfY" style="width: 45%"> + </a> + <a href="TprofX.png"> + <img src="TprofX.png" alt="ProfY" style="width: 45%"> + </a> + <div class="caption"> + <b>Figure 2:</b> Validation of the Finite elements solver and the Monte Carlo + solver (<i>i.e.</i> Stardis) of SYRTHES against the analytical solution of + the test case presented in figure 1. Both curves are computed at steady state + at probe positions varying along the X axis (left) or the Y axis (right). + </div> +</div> + +<p>The version of SYRTHES used for this validation is still on development and +available on-demand. Please <a href="mailto:contact@meso-star.com">contact +us</a> to obtain this version.</p>