htsky

Load and structure a vertically stratified atmosphere
git clone git://git.meso-star.fr/htsky.git
Log | Files | Refs | README | LICENSE

commit 2442d8ad1e1ff0fa7b9b28ce6aa2d26c599b1fbd
Author: Vincent Forest <vincent.forest@meso-star.com>
Date:   Wed, 22 Jan 2020 15:56:33 +0100

First commit

Fork and refactor the code of the htrdr_sky.<h|c> "High-Tune: RenDeRer"
files. No build system is written, yet.

Diffstat:
ACOPYING | 674+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
AREADME.md | 42++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky.c | 618+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky.h | 195+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_atmosphere.c | 257+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_atmosphere.h | 37+++++++++++++++++++++++++++++++++++++
Asrc/htsky_c.h | 144+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_cloud.c | 692+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_cloud.h | 40++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_dump_cloud_vtk.c | 228+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_file_sys.c | 232+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_file_sys.h | 40++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_log.c | 180+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_log.h | 67+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_svx.c | 418+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Asrc/htsky_svx.h | 144+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16 files changed, 4008 insertions(+), 0 deletions(-)

diff --git a/COPYING b/COPYING @@ -0,0 +1,674 @@ + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + <one line to give the program's name and a brief idea of what it does.> + Copyright (C) <year> <name of author> + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see <http://www.gnu.org/licenses/>. + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + <program> Copyright (C) <year> <name of author> + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +<http://www.gnu.org/licenses/>. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +<http://www.gnu.org/philosophy/why-not-lgpl.html>. diff --git a/README.md b/README.md @@ -0,0 +1,42 @@ +# High-Tune: Sky + +This library loads and manages data representing a clear/cloudy sky. The +atmospheric gas mixture is loaded from a +[HTGOP](https://gitlab.com/meso-star/htgop) file while cloud properties are +loaded from data stored with respect to the +[HTCP](https://gitlab.com/meso-star/htcp/) fileformat. The optical properties +of the clouds are finally retrieved from a +[HTMie](https://gitlab.com/meso-star/htmie/) file. Once loaded, the sky +properties (scattering or absorption coefficient, phase function, etc.) can +then be retrieved through functions compatible with the +[Star-MTL](https://gitlab.Com/meso-star/star-mtl/) specification. Consequently +one can use this library as a Star-MTL program describing a semi-transperent +material compatible with the Star-MTL fileformat. + +## How to build + +This library is compatible GNU/Linux 64-bits. It relies on the +[CMake](http://www.cmake.org) and the +[RCMake](https://gitlab.com/vaplv/rcmake/) packages to build. It also depends +on the +[HTCP](https://gitlab.com/meso-star/htcp/), +[HTGOP](https://gitlab.com/meso-star/htgop/), +[HTMie](https://gitlab.com/meso-star/htmie/), +[RSys](https://gitlab.com/vaplv/rsys/) and +[Star-VX](https://gitlab.com/meso-star/star-vx/) libraries. + +First ensure that CMake is installed on your system. Then install the RCMake +package as well as the aforementioned prerequisites. Finally generate the +project from the `cmake/CMakeLists.txt` file by appending to the +`CMAKE_PREFIX_PATH` variable the install directories of its dependencies. The +resulting project can be edited, built, tested and installed as any CMake +project. Refer to the [CMake](https://cmake.org/documentation) for further +informations on CMake. + +## License + +Copyright (C) 2020 [|Meso|Star](http://www.meso-star.com) +<contact@meso-star.com>. HTSky is free software released under the GPL v3+ +license: GNU GPL version 3 or later. You are welcome to redistribute it under +certain conditions; refer to the COPYING file for details. + diff --git a/src/htsky.c b/src/htsky.c @@ -0,0 +1,618 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#include "htsky.h" +#include "htsky_c.h" + +#include <star/ssp.h> +#include <star/svx.h> +#include <high_tune/htcp.h> +#include <high_tune/htgop.h> +#include <high_tune/htmie.h> + +#include <rsys/clock_time.h> + +/******************************************************************************* + * Helper function + ******************************************************************************/ +static INLINE int +check_args(const struct htsky_args* args) +{ + return args + && args->htgop_filename + && args->grid_max_definition[0] + && args->grid_max_definition[1] + && args->grid_max_definition[2] + && args->nthreads + && args->optical_thickness >= 0; +} + +static res_T +setup_sw_bands_properties(struct hsky* sky) +{ + res_T res = RES_OK; + size_t nbands; + size_t i; + ASSERT(sky); + + nbands = htsky_get_sw_spectral_bands_count(sky); + ASSERT(nbands); + sky->sw_bands = MEM_CALLOC(sky->allocator, nbands, sizeof(*sky->sw_bands)); + if(!sky->sw_bands) { + log_err(sky, "could not allocate the list of SW band properties.\n"); + res = RES_MEM_ERR; + goto error; + } + + FOR_EACH(i, 0, nbands) { + struct htgop_spectral_interval band; + double band_wlens[2]; + + HTGOP(get_sw_spectral_interval(sky->htgop, i+sky->sw_bands_range[0], &band)); + band_wlens[0] = wavenumber_to_wavelength(band.wave_numbers[1]); + band_wlens[1] = wavenumber_to_wavelength(band.wave_numbers[0]); + ASSERT(band_wlens[0] < band_wlens[1]); + + sky->sw_bands[i].Ca_avg = htmie_compute_xsection_absorption_average + (sky->htmie, band_wlens, HTMIE_FILTER_LINEAR); + sky->sw_bands[i].Cs_avg = htmie_compute_xsection_scattering_average + (sky->htmie, band_wlens, HTMIE_FILTER_LINEAR); + sky->sw_bands[i].g_avg = htmie_compute_asymmetry_parameter_average + (sky->htmie, band_wlens, HTMIE_FILTER_LINEAR); + ASSERT(sky->sw_bands[i].Ca_avg > 0); + ASSERT(sky->sw_bands[i].Cs_avg > 0); + ASSERT(sky->sw_bands[i].g_avg > 0); + } + +exit: + return res; +error: + if(sky->sw_bands) { + MEM_RM(sky->allocator, sky->sw_bands); + sky->sw_bands = NULL; + } + goto exit; +} + +static void +sample_sw_spectral_data + (struct htgop* htgop, + struct ssp_rng* rng, + res_T (*sample_sw_band)(const struct htgop*, const double, size_t*), + size_t* ispectral_band, + size_t* iquadrature_pt) +{ + struct htgop_spectral_interval specint; + double r1, r2; + res_T res = RES_OK; + ASSERT(htgop && rng && sample_sw_band && ispectral_band && iquadrature_pt); + ASSERT(ispectral_band && iquadrature_pt); + (void)res; + r1 = ssp_rng_canonical(rng); + r2 = ssp_rng_canonical(rng); + res = sample_sw_band(htgop, r1, ispectral_band); + ASSERT(res == RES_OK); + HTGOP(get_sw_spectral_interval(htgop, *ispectral_band, &specint)); + HTGOP(spectral_interval_sample_quadrature(&specint, r2, iquadrature_pt)); +} + +static void +release_sky(ref_T* ref) +{ + struct htsky* sky; + ASSERT(ref); + sky = CONTAINER_OF(ref, struct htsky, ref); + clean_clouds(sky); + clean_atmosphere(sky); + if(sky->svx) SVX(device_ref_put(sky->svx)); + if(sky->htcp) HTCP(ref_put(sky->htcp)); + if(sky->htgop) HTGOP(ref_put(sky->htgop)); + if(sky->htmie) HTMIE(ref_put(sky->htmie)); + if(sky->sw_bands) MEM_RM(sky->allocator, sky->sw_bands); + darray_split_release(&sky->svx2htcp_z); + MEM_RM(sky->allocator, sky); +} + +/******************************************************************************* + * Local functions + ******************************************************************************/ +res_T +htsky_create + (struct logger* logger, /* NULL <=> use default logger */ + struct mem_allocator* mem_allocator, /* NULL <=> use default allocator */ + const struct htsky_args* args, + const int verbose, + struct htsky** out_sky) +{ + struct time t0, t1; + struct mem_allocator* allocator = NULL; + struct htsky* sky = NULL; + char buf[128]; + int nthreads_max; + res_T res = RES_OK; + + if(!check_args(args) || !out_sky) { + res = RES_BAD_ARG; + goto error; + } + + allocator = mem_allocator ? mem_allocator : &mem_default_allocator; + sky = MEM_CALLOC(allocator, sizeof(*sky)); + if(!sky) { + if(verbose) { + #define ERR_STR "Could not allocate the HTSky data structure.\n" + if(logger) { + logger_print(logger, LOG_ERR, ERR_STR); + } else { + fprintf(stderr, MSG_ERROR_PREFIX ERR_STR); + } + #undef ERR_STR + } + res = RES_MEM_ERR; + goto error; + } + nthreads_max = MMAX(omp_get_max_threads(), omp_get_num_procs()); + ref_init(&sky->ref); + sky->allocator = allocator; + sky->verbose = verbose; + sky->repeat_clouds = args->repeat_clouds; + sky->is_cloudy = args->htcp_filename != NULL; + darray_split_init(sky->allocator, &sky->svx2htcp_z); + sky->sw_bands_range[0] = 1; + sky->sw_bands_range[1] = 0; + sky->nthreads = MMIN(args->nthreads, (unsigned)nthreads_max); + + if(logger) { + sky->logger = logger; + } else { + setup_log_default(htsky); + } + + /* Setup an allocator specific to the SVX library */ + res = mem_init_proxy_allocator(&sky->svx_allocator, svx->allocator); + if(res != RES_OK) { + log_err(sky, "cannot init the allocator used to manage the Star-VX data.\n"); + goto error; + } + + /* Create the Star-VX library device */ + res = svx_device_create + (sky->logger, &sky->svx_allocator, sky->verbose, &sky->svx); + if(res != RES_OK) { + log_err(sky, "error creating the Star-VX library device.\n"); + goto error; + } + + /* Load the gas optical properties */ + res = htgop_create(&sky->logger, sky->allocator, sky->verbose, &sky->htgop); + if(res != RES_OK) { + log_err(sky, "could not create the gas optical properties loader.\n"); + goto error; + } + res = htgop_load(sky->htgop, args->htgop_filename); + if(res != RES_OK) { + log_err(sky, "error loading the gas optical properties -- `%s'.\n", + args->htgop_filename); + goto error; + } + + /* Fetch short wave bands range */ + res = htgop_get_sw_spectral_intervals_CIE_XYZ(sky->htgop, sky->sw_bands_range); + if(res != RES_OK) goto error; + + /* Setup the atmopshere */ + time_current(&t0); + res = atmosphere_setup(sky, args->optical_thickness); + if(res != RES_OK) goto error; + time_sub(&t0, time_current(&t1), &t0); + time_dump(&t0, TIME_ALL, NULL, buf, sizeof(buf)); + log_info(sky, "setup atmosphere in %s\n", buf); + + /* Nothing more to do */ + if(!sky->is_cloudy) goto exit; + + if(!sky->htmie_filename) { + log_err(sky, "missing the HTMie filename.\n"); + res = RES_BAD_ARG; + goto error; + } + + if(!sky->htcp_filename) { + log_err(sky, "missing the HTCP filename.\n"); + res = RES_BAD_ARG; + goto error; + } + + /* Load MIE data */ + res = htmie_create(&sky->logger, sky->allocator, sky->verbose, &sky->htmie); + if(res != RES_OK) { + log_err(sky, "could not create the Mie's data loader.\n"); + goto error; + } + res = htmie_load(sky->htmie, args->htmie_filename); + if(res != RES_OK) { + log_err(sky, "error loading the Mie's data -- `%s'.\n", args->htmie_filename); + goto error; + } + + res = setup_sw_bands_properties(sky); + if(res != RES_OK) goto error; + + /* Load clouds properties */ + res = htcp_create(&sky->logger, sky->allocator, sky->verbose, &sky->htcp); + if(res != RES_OK) { + log_err(sky, "could not create the loader of cloud properties.\n"); + goto error; + } + res = htcp_load(sky->htcp, args->htcp_filename); + if(res != RES_OK) { + log_err(sky, "error loading the cloud properties -- `%s'.\n", + args->htcp_filename); + goto error; + } + + time_current(&t0); + res = cloud_setup(sky, args->htcp_filename, args->htgop_filename, + args->htmie_filename, args->optical_thickness); + if(res != RES_OK) goto error; + time_sub(&t0, time_current(&t1), &t0); + time_dump(&t0, TIME_ALL, NULL, buf, sizeof(buf)); + log_info(sky, "setup clouds in %s\n", buf); + + if(sky->verbose) { + log_svx_memory_usage(htsky); + } + +exit: + *out_sky = sky; + return res; +error: + if(sky) { + htsky_ref_put(sky); + sky = NULL; + } + goto exit; +} + +res_T +htsky_ref_get(struct htsky* sky) +{ + if(!sky) return RES_BAD_ARG; + ref_get(&sky->ref); + return RES_OK; +} + +res_T +htsky_ref_put(struct htsky* sky) +{ + if(sky) return RES_BAD_ARG; + ref_put(&sky->ref, release_sky); + return RES_OK; +} + +double +htsky_fetch_particle_phase_function_asymmetry_parameter + (const struct htsky* sky, + const size_t ispectral_band, + const size_t iquad) +{ + size_t i; + ASSERT(sky); + ASSERT(ispectral_band >= sky->sw_bands_range[0]); + ASSERT(ispectral_band <= sky->sw_bands_range[1]); + (void)iquad; + if(!sky->is_cloudy) { + return 0; + } else { + i = ispectral_band - sky->sw_bands_range[0]; + return sky->sw_bands[i].g_avg; + } +} + +double +htsky_fetch_raw_property + (const struct htsky* sky, + const enum htsky_property prop, + const int components_mask, /* Combination of htsky_component_flag */ + const size_t iband, /* Index of the spectral band */ + const size_t iquad, /* Index of the quadrature point in the spectral band */ + const double pos[3], + const double k_min, + const double k_max) +{ + size_t ivox[3]; + size_t i; + const struct svx_tree_desc* cloud_desc = NULL; + const struct svx_tree_desc* atmosphere_desc = NULL; + int comp_mask = components_mask; + int in_clouds; /* Defines if `pos' lies in the clouds */ + int in_atmosphere; /* Defines if `pos' lies in the atmosphere */ + double pos_cs[3]; /* Position in cloud space */ + double k_particle = 0; + double k_gas = 0; + double k = 0; + ASSERT(sky && pos); + ASSERT(iband >= sky->sw_bands_range[0]); + ASSERT(iband <= sky->sw_bands_range[1]); + ASSERT(comp_mask & HTSKY_CPNT_MASK_ALL); + + i = iband - sky->sw_bands_range[0]; + cloud_desc = sky->is_cloudy ? &sky->clouds[i][iquad].octree_desc : NULL; + atmosphere_desc = &sky->atmosphere[i][iquad].bitree_desc; + ASSERT(atmosphere_desc->frame[0] == SVX_AXIS_Z); + + /* Is the position inside the clouds? */ + if(!sky->is_cloudy) { + in_clouds = 0; + } else if(sky->repeat_clouds) { + in_clouds = + pos[2] >= cloud_desc->lower[2] + && pos[2] <= cloud_desc->upper[2]; + } else { + in_clouds = + pos[0] >= cloud_desc->lower[0] + && pos[1] >= cloud_desc->lower[1] + && pos[2] >= cloud_desc->lower[2] + && pos[0] <= cloud_desc->upper[0] + && pos[1] <= cloud_desc->upper[1] + && pos[2] <= cloud_desc->upper[2]; + } + + /* Is the position inside the atmosphere? */ + ASSERT(atmosphere_desc->frame[0] == SVX_AXIS_Z); + in_atmosphere = + pos[2] >= atmosphere_desc->lower[2] + && pos[2] <= atmosphere_desc->upper[2]; + + if(!in_clouds) { + /* Make invalid the voxel index */ + ivox[0] = SIZE_MAX; + ivox[1] = SIZE_MAX; + ivox[2] = SIZE_MAX; + /* Not in clouds => No particle */ + comp_mask &= ~HTSKY_CPNT_FLAG_PARTICLES; + /* Not in atmopshere => No gas */ + if(!in_atmosphere) comp_mask &= ~HTSKY_CPNT_FLAG_GAS; + } else { + world_to_cloud(sky, pos, pos_cs); + + /* Compute the index of the voxel to fetch */ + ivox[0] = (size_t)((pos_cs[0] - cloud_desc->lower[0])/sky->htcp_desc.vxsz_x); + ivox[1] = (size_t)((pos_cs[1] - cloud_desc->lower[1])/sky->htcp_desc.vxsz_y); + if(!sky->htcp_desc.irregular_z) { + /* The voxels along the Z dimension have the same size */ + ivox[2] = (size_t)((pos_cs[2] - cloud_desc->lower[2])/sky->htcp_desc.vxsz_z[0]); + } else { + /* Irregular voxel size along the Z dimension. Compute the index of the Z + * position in the svx2htcp_z Look Up Table and use the LUT to define the + * voxel index into the HTCP descripptor */ + const struct split* splits = darray_split_cdata_get(&sky->svx2htcp_z); + const size_t ilut = (size_t) + ((pos_cs[2] - cloud_desc->lower[2]) / sky->lut_cell_sz); + ivox[2] = splits[ilut].index + (pos_cs[2] > splits[ilut].height); + } + } + + if(comp_mask & HTSKY_CPNT_FLAG_PARTICLES) { + double rho_da = 0; /* Dry air density */ + double rct = 0; /* #droplets in kg of water per kg of dry air */ + double ql = 0; /* Droplet density In kg.m^-3 */ + double Ca = 0; /* Massic absorption cross section in m^2.kg^-1 */ + double Cs = 0; /* Massic scattering cross section in m^2.kg^-1 */ + ASSERT(in_clouds); + + /* Compute he dry air density */ + rho_da = cloud_dry_air_density(&sky->htcp_desc, ivox); + + /* Compute the droplet density */ + rct = htcp_desc_RCT_at(&sky->htcp_desc, ivox[0], ivox[1], ivox[2], 0); + ql = rho_da * rct; + + /* Use the average cross section of the current spectral band */ + if(prop == HTSKY_Ka || prop == HTSKY_Kext) Ca = sky->sw_bands[i].Ca_avg; + if(prop == HTSKY_Ks || prop == HTSKY_Kext) Cs = sky->sw_bands[i].Cs_avg; + + k_particle = ql*(Ca + Cs); + } + + if(comp_mask & HTSKY_CPNT_FLAG_GAS) { + struct htgop_layer layer; + struct htgop_layer_sw_spectral_interval band; + size_t ilayer = 0; + ASSERT(in_atmosphere); + + /* Retrieve the quadrature point into the spectral band of the layer into + * which `pos' lies */ + HTGOP(position_to_layer_id(sky->htgop, pos[2], &ilayer)); + HTGOP(get_layer(sky->htgop, ilayer, &layer)); + HTGOP(layer_get_sw_spectral_interval(&layer, iband, &band)); + + if(!in_clouds) { + /* Pos is outside the clouds. Directly fetch the nominal optical + * properties */ + ASSERT(iquad < band.quadrature_length); + switch(prop) { + case HTSKY_Ka: k_gas = band.ka_nominal[iquad]; break; + case HTSKY_Ks: k_gas = band.ks_nominal[iquad]; break; + case HTSKY_Kext: + k_gas = band.ka_nominal[iquad] + band.ks_nominal[iquad]; + break; + default: FATAL("Unreachable code.\n"); break; + } + } else { + /* Pos is inside the clouds. Compute the water vapor molar fraction at + * the current voxel */ + const double x_h2o = cloud_water_vapor_molar_fraction(&sky->htcp_desc, ivox); + struct htgop_layer_sw_spectral_interval_tab tab; + + /* Retrieve the tabulated data for the quadrature point */ + HTGOP(layer_sw_spectral_interval_get_tab(&band, iquad, &tab)); + + /* Fetch the optical properties wrt x_h2o */ + switch(prop) { + case HTSKY_Ka: + HTGOP(layer_sw_spectral_interval_tab_fetch_ka(&tab, x_h2o, &k_gas)); + break; + case HTSKY_Ks: + HTGOP(layer_sw_spectral_interval_tab_fetch_ks(&tab, x_h2o, &k_gas)); + break; + case HTSKY_Kext: + HTGOP(layer_sw_spectral_interval_tab_fetch_kext(&tab, x_h2o, &k_gas)); + break; + default: FATAL("Unreachable code.\n"); break; + } + } + } + + k = k_particle + k_gas; + ASSERT(k >= k_min && k <= k_max); + (void)k_min, (void)k_max; + return k; +} + +size_t +htsky_get_sw_spectral_bands_count(const struct htsky* sky) +{ + ASSERT(sky && sky->sw_bands_range[0] <= sky->sw_bands_range[1]); + return sky->sw_bands_range[1] - sky->sw_bands_range[0] + 1; +} + +size_t +htsky_get_sw_spectral_band_id + (const struct htsky* sky, const size_t i) +{ + ASSERT(sky && i < htsky_get_sw_spectral_bands_count(sky)); + return sky->sw_bands_range[0] + i; +} + +size_t +htsky_get_sw_spectral_band_quadrature_length + (const struct htsky* sky, const size_t iband) +{ + struct htgop_spectral_interval band; + ASSERT(sky); + ASSERT(iband >= sky->sw_bands_range[0]); + ASSERT(iband <= sky->sw_bands_range[1]); + HTGOP(get_sw_spectral_interval(sky->htgop, iband, &band)); + return band.quadrature_length; +} + +res_T +htsky_get_sw_spectral_band_bounds + (const struct htsky* sky, + const size_t iband, + double wavelengths[2]) +{ + struct htgop_spectral_interval specint; + res_T res = RES_OK; + ASSERT(sky && wavelengths); + + res = htgop_get_sw_spectral_interval(sky->htgop, iband, &specint); + if(res != RES_OK) return res; + + wavelengths[0] = wavenumber_to_wavelength(specint.wave_numbers[1]); + wavelengths[1] = wavenumber_to_wavelength(specint.wave_numbers[0]); + ASSERT(wavelengths[0] < wavelengths[1]); + return RES_OK; +} + +void +htsky_sample_sw_spectral_data_CIE_1931_X + (const struct htsky* sky, + struct ssp_rng* rng, + size_t* ispectral_band, + size_t* iquadrature_pt) +{ + sample_sw_spectral_data + (sky->htgop, rng, htgop_sample_sw_spectral_interval_CIE_1931_X, + ispectral_band, iquadrature_pt); +} + +void +htsky_sample_sw_spectral_data_CIE_1931_Y + (const struct htsky* sky, + struct ssp_rng* rng, + size_t* ispectral_band, + size_t* iquadrature_pt) +{ + sample_sw_spectral_data + (sky->htgop, rng, htgop_sample_sw_spectral_interval_CIE_1931_Y, + ispectral_band, iquadrature_pt); +} + +void +htsky_sample_sw_spectral_data_CIE_1931_Z + (const struct htsky* sky, + struct ssp_rng* rng, + size_t* ispectral_band, + size_t* iquadrature_pt) +{ + sample_sw_spectral_data + (sky->htgop, rng, htgop_sample_sw_spectral_interval_CIE_1931_Z, + ispectral_band, iquadrature_pt); +} + +/******************************************************************************* + * Local functions + ******************************************************************************/ +double* +world_to_cloud + (const struct htsky* sky, + const double pos_ws[3], /* World space position */ + double out_pos_cs[3]) +{ + double cloud_sz[2]; + double pos_cs[3]; + double pos_cs_n[2]; + ASSERT(sky && pos_ws && out_pos_cs); + ASSERT(pos_ws[2] >= sky->htcp_desc.lower[2]); + ASSERT(pos_ws[2] <= sky->htcp_desc.upper[2]); + + if(!sky->repeat_clouds) { /* Nothing to do */ + return d3_set(out_pos_cs, pos_ws); + } + + if(!sky->repeat_clouds /* Nothing to do */ + || ( pos_ws[0] >= sky->htcp_desc.lower[0] + && pos_ws[0] <= sky->htcp_desc.upper[0] + && pos_ws[1] >= sky->htcp_desc.lower[1] + && pos_ws[1] <= sky->htcp_desc.upper[1])) { + return d3_set(out_pos_cs, pos_ws); + } + + cloud_sz[0] = sky->htcp_desc.upper[0] - sky->htcp_desc.lower[0]; + cloud_sz[1] = sky->htcp_desc.upper[1] - sky->htcp_desc.lower[1]; + + /* Transform pos in normalize local cloud space */ + pos_cs_n[0] = (pos_ws[0] - sky->htcp_desc.lower[0]) / cloud_sz[0]; + pos_cs_n[1] = (pos_ws[1] - sky->htcp_desc.lower[1]) / cloud_sz[1]; + pos_cs_n[0] -= (int)pos_cs_n[0]; /* Keep fractional part */ + pos_cs_n[1] -= (int)pos_cs_n[1]; /* Keep fractional part */ + if(pos_cs_n[0] < 0) pos_cs_n[0] += 1; + if(pos_cs_n[1] < 0) pos_cs_n[1] += 1; + + /* Transform pos in local cloud space */ + pos_cs[0] = sky->htcp_desc.lower[0] + pos_cs_n[0] * cloud_sz[0]; + pos_cs[1] = sky->htcp_desc.lower[1] + pos_cs_n[1] * cloud_sz[1]; + pos_cs[2] = pos_ws[2]; + + ASSERT(pos_cs[0] >= sky->htcp_desc.lower[0]); + ASSERT(pos_cs[0] <= sky->htcp_desc.upper[0]); + ASSERT(pos_cs[1] >= sky->htcp_desc.lower[1]); + ASSERT(pos_cs[1] <= sky->htcp_desc.upper[1]); + + return d3_set(out_pos_cs, pos_cs); +} + diff --git a/src/htsky.h b/src/htsky.h @@ -0,0 +1,195 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#ifndef HTSKY_H +#define HTSKY_H + +#include <rsys/rsys.h> + +/* Library symbol management */ +#if defined(HTSKY_SHARED_BUILD) /* Build shared library */ + #define HTSKY_API extern EXPORT_SYM +#elif defined(SMTL_STATIC) /* Use/build static library */ + #define HTSKY_API extern LOCAL_SYM +#else /* Use shared library */ + #define HTSKY_API extern IMPORT_SYM +#endif + +#ifndef NDEBUG + #define HTSKY(Func) ASSERT(htsky_ ## Func == RES_OK) +#else + #define HTSKY(Func) htsky_ ## Func +#endif + +enum htsky_property { + HTSKY_Ks, /* Scattering coefficient */ + HTSLY_Ka, /* Absorption coefficient */ + HTSKY_Kext, /* Extinction coefficient = Ks + Ka */ + HTSKY_PROPS_COUNT__ +}; + +/* List of sky components */ +enum htsky_component { + HTSKY_CPNT_GAS, + HTSKY_CPNT_PARTICLES, + HTSKY_CPNTS_COUNT__ +}; + +/* Component of the sky for which the properties are queried */ +enum htrdr_sky_component_flag { + HTSKY_CPNT_FLAG_GAS = BIT(HTSKY_CPNT_GAS), + HTSKY_CPNT_FLAG_PARTICLES = BIT(HTSKY__CPNT_PARTICLES), + HTSKY_CPNT_MASK_ALL = HTRDR_CPNT_FLAG_GAS | HTSKY_CPNT_FLAG_PARTICLES +}; + +enum htsky_svx_op { + HTSKY_SVX_MIN, + HTSKY_SVX_MAX, + HTSKY_SVX_OPS_COUNT__ +}; + +struct htsky_args { + const char* htcp_filename; + const char* htgop_filename; + const char* htmie_filename; + unsigned grid_max_definition[3]; /* Maximum definition of the grid */ + double optical_thickness; /* Threshold used during octree building */ + unsigned nthreads; /* Hint on the number of threads to use */ + int repeat_clouds; /* Define if the clouds are infinitely repeated in X and Y */ + int verbose; /* Verbosity level */ +}; + +#define HTSKY_ARGS_DEFAULT__ { \ + NULL, /* htcp_filename */ \ + NULL, /* htgop_filename */ \ + NULL, /* htmie filename */ \ + {UINT_MAX, UINT_MAX, UINT_MAX}, /* Maximum definition of the grid */ \ + 1, /* Optical thickness a*/ \ + (unsigned)~0, /* #threads */, \ + 0, /* Repeat clouds */ \ + 0, /* Verbosity level */ \ +} +static const struct htsky_args HTSKY_ARGS_DEFAULT = HTSKY_ARGS_DEFAULT__; + +BEGIN_DECLS + +/******************************************************************************* + * HTSky API + ******************************************************************************/ +HTSKY_API res_T +htsky_create + (struct logger* logger, /* NULL <=> use default logger */ + struct mem_allocator* allocator, /* NULL <=> use default allocator */ + const struct htsky_args* args, + struct htsky** htsky); + +HTSKY_API res_T +htsky_ref_get + (struct htsky* htsky); + +HTSKY_API res_T +htsky_ref_put + (struct htsky* htsky); + +HTSKY_API double +htsky_fetch_particle_phase_function_asymmetry_parameter + (const struct htsky* sky, + const size_t ispectral_band, + const size_t iquad); + +HTSKY_API double +htsky_fetch_raw_property + (const struct htsky* sky, + const enum htsky_property prop, + const int components_mask, /* Combination of htsky_component_flag */ + const size_t iband, /* Index of the spectral band */ + const size_t iquad, /* Index of the quadrature point in the spectral band */ + const double pos[3], + /* For debug only. Assert if the fetched property is not in [k_min, k_max] */ + const double k_min, + const double k_max); + +HTSKY_API double +htsky_fetch_svx_property + (const struct htsky* sky, + const enum htsky_property prop, + const enum htsky_svx_op op, + const int components_mask, /* Combination of htsky_component_flag */ + const size_t iband, /* Index of the spectral band */ + const size_t iquad, /* Index of the quadrature point in the spectral band */ + const double pos[3]); + +HTSKY_API double +htsky_fetch_svx_voxel_property + (const struct htsky* sky, + const enum htsky_property prop, + const enum htsky_svx_op op, + const int components_mask, + const size_t ispectral_band, /* Index of the spectral band */ + const size_t iquad, /* Index of the quadrature point in the spectral band */ + const struct svx_voxel* voxel); + +HTSKY_API size_t +htsky_get_sw_spectral_bands_count + (const struct htsky* sky); + +HTSKY_API size_t +htsky_get_sw_spectral_band_id + (const struct htsky* sky, + const size_t i); + +HTSKY_API size_t +htsky_get_sw_spectral_band_quadrature_length + (const struct htsky* sky, + const size_t iband); + +HTSKY_API res_T +htsky_get_sw_spectral_band_bounds + (const struct htsky* sky, + const size_t iband, + double wavelengths[2]); + +HTSKY_API void +htsky_sample_sw_spectral_data_CIE_1931_X + (const struct htsky* sky, + struct ssp_rng* rng, + size_t* ispectral_band, + size_t* iquadrature_pt); + +HTSKY_API void +htsky_sample_sw_spectral_data_CIE_1931_Y + (const struct htsky* sky, + struct ssp_rng* rng, + size_t* ispectral_band, + size_t* iquadrature_pt); + +HTSKY_API void +htsky_sample_sw_spectral_data_CIE_1931_Z + (const struct htsky* sky, + struct ssp_rng* rng, + size_t* ispectral_band, + size_t* iquadrature_pt); + +HTSKY_API res_T +htsky_dump_clouds_vtk + (const struct htsky* sky, + const size_t iband, /* Index of the spectral band */ + const size_t iquad, /* Index of the quadrature point */ + FILE* stream); + +END_DECLS + +#endif /* HTSKY_H */ + diff --git a/src/htsky_atmosphere.c b/src/htsky_atmosphere.c @@ -0,0 +1,257 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#define _POSIX_C_SOURCE 200809L /* nextafterf */ + +#include "htsky_c.h" +#include "htsky_atmosphere.h" +#include "htsky_svx.h" + +#include <high_tune/htgop.h> +#include <star/svx.h> + +#include <math.h> + +/******************************************************************************* + * Helper functions + ******************************************************************************/ +static void +atmosphere_vox_get(const size_t xyz[3], void* dst, void* context) +{ + float* vox = dst; + struct build_tree_context* ctx = context; + struct htgop_level level; + size_t layer_range[2]; + size_t nlevels; + double vox_low, vox_upp; + double ka_min, ks_min, kext_min; + double ka_max, ks_max, kext_max; + size_t ilayer; + ASSERT(xyz && dst && context); + + /* Compute the boundaries of the SVX voxel */ + HTGOP(get_level(ctx->sky->htgop, 0, &level)); + vox_low = (double)xyz[2] * ctx->vxsz[2] + level.height; + HTGOP(get_levels_count(ctx->sky->htgop, &nlevels)); + HTGOP(get_level(ctx->sky->htgop, nlevels-1, &level)); + vox_upp = MMIN(vox_low + ctx->vxsz[2], level.height); /* Handle numerical issues */ + + /* Define the atmospheric layers overlapped by the SVX voxel */ + HTGOP(position_to_layer_id(ctx->sky->htgop, vox_low, &layer_range[0])); + HTGOP(position_to_layer_id(ctx->sky->htgop, vox_upp, &layer_range[1])); + + ka_min = ks_min = kext_min = DBL_MAX; + ka_max = ks_max = kext_max =-DBL_MAX; + + /* For each atmospheric layer that overlaps the SVX voxel ... */ + FOR_EACH(ilayer, layer_range[0], layer_range[1]+1) { + struct htgop_layer layer; + struct htgop_layer_sw_spectral_interval band; + size_t iquad; + + HTGOP(get_layer(ctx->sky->htgop, ilayer, &layer)); + + /* ... retrieve the considered spectral interval */ + HTGOP(layer_get_sw_spectral_interval(&layer, ctx->iband, &band)); + + /* ... and update the radiative properties bound with the per quadrature + * point nominal values */ + ASSERT(ctx->quadrature_range[0] <= ctx->quadrature_range[1]); + ASSERT(ctx->quadrature_range[1] < band.quadrature_length); + FOR_EACH(iquad, ctx->quadrature_range[0], ctx->quadrature_range[1]+1) { + ka_min = MMIN(ka_min, band.ka_nominal[iquad]); + ka_max = MMAX(ka_max, band.ka_nominal[iquad]); + ks_min = MMIN(ks_min, band.ks_nominal[iquad]); + ks_max = MMAX(ks_max, band.ks_nominal[iquad]); + kext_min = MMIN(kext_min, band.ka_nominal[iquad]+band.ks_nominal[iquad]); + kext_max = MMAX(kext_max, band.ka_nominal[iquad]+band.ks_nominal[iquad]); + } + } + + /* Ensure that the single precision bounds include their double precision + * version. */ + if(ka_min != (float)ka_min) ka_min = nextafterf((float)ka_min,-FLT_MAX); + if(ka_max != (float)ka_max) ka_max = nextafterf((float)ka_max, FLT_MAX); + if(ks_min != (float)ks_min) ks_min = nextafterf((float)ks_min,-FLT_MAX); + if(ks_max != (float)ks_max) ks_max = nextafterf((float)ks_max, FLT_MAX); + if(kext_min != (float)kext_min) kext_min = nextafterf((float)kext_min,-FLT_MAX); + if(kext_max != (float)kext_max) kext_max = nextafterf((float)kext_max, FLT_MAX); + + /* Setup gas optical properties of the voxel */ + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Ka, HTSKY_SVX_MIN, (float)ka_min); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Ka, HTSKY_SVX_MAX, (float)ka_max); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Ks, HTSKY_SVX_MIN, (float)ks_min); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Ks, HTSKY_SVX_MAX, (float)ks_max); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Kext, HTSKY_SVX_MIN, (float)kext_min); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Kext, HTSKY_SVX_MAX, (float)kext_max); +} + +static void +atmosphere_vox_merge + (void* dst, + const void* voxs[], + const size_t nvoxs, + void* ctx) +{ + ASSERT(dst && voxels && nvoxs); + (void)ctx; + vox_merge_component(dst, HTSKY_CPNT_GAS, (const float**)voxs, nvoxs); +} + +static int +atmosphere_vox_challenge_merge + (const struct svx_voxel voxs[] + const size_t nvoxs, + void* ctx) +{ + ASSERT(voxels); + return vox_challenge_merge_component(HTSKY_CPNT_GAS, voxs, nvoxs, ctx); +} + +/******************************************************************************* + * Local functions + ******************************************************************************/ +res_T +atmosphere_setup(struct htsky* sky, const double optical_thickness_threshold) +{ + struct build_tree_context ctx = BUILD_TREE_CONTEXT_NULL; + struct htgop_level lvl_low, lvl_upp; + struct svx_voxel_desc vox_desc = SVX_VOXEL_DESC_NULL; + double low, upp; + size_t nlayers, nlevels; + size_t definition; + size_t nbands; + size_t i; + res_T res = RES_OK; + ASSERT(sky && optical_thickness_threshold >= 0); + + HTGOP(get_layers_count(sky->htgop, &nlayers)); + HTGOP(get_levels_count(sky->htgop, &nlevels)); + HTGOP(get_level(sky->htgop, 0, &lvl_low)); + HTGOP(get_level(sky->htgop, nlevels-1, &lvl_upp)); + low = lvl_low.height; + upp = lvl_upp.height; + definition = nlayers; + + /* Setup the build context */ + ctx.sky = sky; + ctx.tau_threshold = optical_thickness_threshold; + ctx.vxsz[0] = INF; + ctx.vxsz[1] = INF; + ctx.vxsz[2] = (upp-low)/(double)definition; + + /* Setup the voxel descriptor for the atmosphere. Note that in contrats with + * the clouds, the voxel contains only NFLOATS_PER_CPNT floats and not + * NFLOATS_PER_VOXEL. Indeed, the atmosphere has only 1 component: the gas. + * Anyway, we still rely on the memory layout of the cloud voxels excepted + * that we assume that the optical properties of the particles are never + * fetched. We thus have to ensure that the gas properties are arranged + * before the particles, i.e. HTSKY_CPNT_GAS == 0 */ + vox_desc.get = atmosphere_vox_get; + vox_desc.merge = atmosphere_vox_merge; + vox_desc.challenge_merge = atmosphere_vox_challenge_merge; + vox_desc.context = &ctx; + vox_desc.size = sizeof(float) * NFLOATS_PER_CPNT; + { STATIC_ASSERT(HTSKY_CPNT_GAS == 0, Unexpected_enum_value); } + + /* Create as many atmospheric data structure than considered SW spectral + * bands */ + nbands = htsky_get_sw_spectral_bands_count(sky); + sky->atmosphere = MEM_CALLOC + (sky->allocator, nbands, sizeof(*sky->atmosphere)); + if(!sky->atmosphere) { + log_err(sky, + "could not create the list of per SW band atmospheric data structure.\n"); + res = RES_MEM_ERR; + goto error; + } + + FOR_EACH(i, 0, nbands) { + size_t iquad; + struct htgop_spectral_interval band; + ctx.iband = i + sky->sw_bands_range[0]; + + HTGOP(get_sw_spectral_interval(sky->htgop, ctx.iband, &band)); + + sky->atmosphere[i] = MEM_CALLOC(sky->allocator, + band.quadrature_length, sizeof(*sky->atmosphere[i])); + if(!sky->atmosphere[i]) { + log_err(sky, + "could not create the list of per quadrature point atmospheric data " + "for the band %lu.\n", (unsigned long)ctx.iband); + res = RES_MEM_ERR; + goto error; + } + + /* Build an atmospheric binary tree for each quadrature point of the + * considered spectral band */ + FOR_EACH(iquad, 0, band.quadrature_length) { + ctx.quadrature_range[0] = iquad; + ctx.quadrature_range[1] = iquad; + + /* Create the atmospheric binary tree */ + res = svx_bintree_create(sky->svx, low, upp, definition, SVX_AXIS_Z, + &vox_desc, &sky->atmosphere[i][iquad].bitree); + if(res != RES_OK) { + log_err(sky, "could not create the binary tree of the " + "atmospheric properties for the band %lu.\n", (unsigned long)ctx.iband); + goto error; + } + + /* Fetch the binary tree descriptor for future use */ + SVX(tree_get_desc(sky->atmosphere[i][iquad].bitree, + &sky->atmosphere[i][iquad].bitree_desc)); + } + } + +exit: + return res; +error: + atmosphere_clean(sky); + goto exit; +} + +void +atmosphere_clean(struct htsky* sky) +{ + size_t nbands; + size_t i; + ASSERT(sky); + + if(!sky->atmosphere) return; + + nbands = htsky_get_sw_spectral_bands_count(sky); + FOR_EACH(i, 0, nbands) { + struct htgop_spectral_interval band; + size_t iband; + size_t iquad; + + iband = sky->sw_bands_range[0] + i; + HTGOP(get_sw_spectral_interval(sky->htgop, iband, &band)); + + if(!sky->atmosphere[i]) continue; + + FOR_EACH(iquad, 0, band.quadrature_length) { + if(sky->atmosphere[i][iquad].bitree) { + SVX(tree_ref_put(sky->atmosphere[i][iquad].bitree)); + sky->atmosphere[i][iquad].bitree = NULL; + } + } + MEM_RM(sky->allocator, sky->atmosphere[i]); + } + MEM_RM(sky->allocator, sky->atmosphere); + sky->atmosphere = NULL; +} + diff --git a/src/htsky_atmosphere.h b/src/htsky_atmosphere.h @@ -0,0 +1,37 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#ifndef HTSKY_ATMOSPHERE_H +#define HTSKY_ATMOSPHERE_H + +#include <star/svx.h> /* svx_tree_desc */ + +struct htsky; + +struct atmosphere { + struct svx_tree* bitree; + struct svx_tree_desc bitree_desc; +}; + +extern LOCAL_SYM res_T +atmosphere_setup + (struct htsky* sky, + const double optical_thickness_threshold); + +extern LOCAL_SYM void +atmosphere_clean + (struct htsky* sky); + +#endif /* HTSKY_ATMOSPHERE_H */ diff --git a/src/htsky_c.h b/src/htsky_c.h @@ -0,0 +1,144 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#ifndef HTSKY_C_H +#define HTSKY_C_H + +#include <high_tune/htcp.h> + +#include <rsys/logger.h> +#include <rsys/mem_allocator.h> +#include <rsys/ref_count.h> + +/* Declare some constants */ +#define DRY_AIR_MOLAR_MASS 0.0289644 /* In kg.mol^-1 */ +#define H2O_MOLAR_MASS 0.01801528 /* In kg.mol^-1 */ +#define GAS_CONSTANT 8.3144598 /* In kg.m^2.s^-2.mol^-1.K */ + +/* Forward declaration of external data types */ +struct htcp; +struct htgop; +struct htmie; +struct svx_tree; +struct svx_tree_desc; + +/* Forward declarations of internal data types */ +struct atmosphere; + +struct split { + size_t index; /* Index of the current htcp voxel */ + double height; /* Absolute height where the next voxel starts */ +}; + +#define DARRAY_NAME split +#define DARRAY_DATA struct split +#include <rsys/dynamic_array.h> + +/* Properties of a short wave spectral band */ +struct sw_band_prop { + /* Average cross section in the band */ + double Ca_avg; /* Absorption cross section */ + double Cs_avg; /* Scattering cross section */ + + /* Average asymmetry parameter the band */ + double g_avg; +}; + +struct htrdr_sky { + struct cloud** clouds; /* Per sw_band cloud data structure */ + + /* Per sw_band and per quadrature point atmosphere data structure */ + struct atmosphere** atmosphere; + + /* Loaders of... */ + struct htcp* htcp; /* ... Cloud properties */ + struct htgop* htgop; /* ... Gas optical properties */ + struct htmie* htmie; /* ... Mie's data */ + + /* Star-VX library handle */ + struct svx_device* svx; + + struct htcp_desc htcp_desc; /* Descriptor of the loaded LES data */ + + /* LUT used to map the index of a Z from the regular SVX to the irregular + * HTCP data */ + struct darray_split svx2htcp_z; + double lut_cell_sz; /* Size of a svx2htcp_z cell */ + + /* Ids and optical properties of the short wave spectral bands loaded by + * HTGOP and that overlap the CIE XYZ color space */ + size_t sw_bands_range[2]; + struct sw_band_prop* sw_bands; + + int repeat_clouds; /* Make clouds infinite in X and Y */ + int is_cloudy; /* The sky has clouds */ + + unsigned nthreads; /* #threads */ + + struct mem_allocator* allocator; + struct mem_allocator svx_allocator; + struct logger* logger; + struct logger logger__; /* Default logger */ + int verbose; + ref_T ref; +}; + +static FINLINE double +wavenumber_to_wavelength(const double nu/*In cm^-1*/) +{ + return 1.e7 / nu; +} + +/* In cm^-1 */ +static FINLINE double +wavelength_to_wavenumber(const double lambda/*In nanometer*/) +{ + return wavenumber_to_wavelength(lambda); +} + +/* Compute the dry air density in the cloud */ +static FINLINE double +cloud_dry_air_density + (const struct htcp_desc* desc, + const size_t ivox[3]) /* Index of the voxel */ +{ + double P = 0; /* Pressure in Pa */ + double T = 0; /* Temperature in K */ + ASSERT(desc && ivox); + P = htcp_desc_PABST_at(desc, ivox[0], ivox[1], ivox[2], 0/*time*/); + T = htcp_desc_T_at(desc, ivox[0], ivox[1], ivox[2], 0/*time*/); + return (P*DRY_AIR_MOLAR_MASS)/(T*GAS_CONSTANT); +} + +/* Compute the water molar fraction */ +static FINLINE double +cloud_water_vapor_molar_fraction + (const struct htcp_desc* desc, + const size_t ivox[3]) +{ + double rvt = 0; + ASSERT(desc && ivox); + rvt = htcp_desc_RVT_at(desc, ivox[0], ivox[1], ivox[2], 0/*time*/); + return rvt / (rvt + H2O_MOLAR_MASS/DRY_AIR_MOLAR_MASS); +} + +/* Transform a position from world to cloud space */ +extern LOCAL_SYM double* +world_to_cloud + (const struct htsky* sky, + const double pos_ws[3], /* World space position */ + double out_pos_cs[3]); + +#endif /* HTSKY_C_H */ diff --git a/src/htsky_cloud.c b/src/htsky_cloud.c @@ -0,0 +1,692 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#define _POSIX_C_SOURCE 200809L /* nextafterf */ + +#include "htsky_cloud.h" +#include "htsky_svx.h" + +#include <rsys/dynamic_array.h> +#include <star/svx.h> + +#include <omp.h> + +struct spectral_data { + size_t iband; /* Index of the spectral band */ + size_t iquad; /* Quadrature point into the band */ +}; + +/* Define the dynamic array of spectral data */ +#define DARRAY_NAME specdata +#define DARRAY_DATA struct spectral_data +#include <rsys/dynamic_array.h> + +/******************************************************************************* + * Helper functions + ******************************************************************************/ +static INLINE int +aabb_intersect + (const double aabb0_low[3], + const double aabb0_upp[3], + const double aabb1_low[3], + const double aabb1_upp[3]) +{ + ASSERT(aabb0_low[0] < aabb0_upp[0] && aabb1_low[0] < aabb1_upp[0]); + ASSERT(aabb0_low[1] < aabb0_upp[1] && aabb1_low[1] < aabb1_upp[1]); + ASSERT(aabb0_low[2] < aabb0_upp[2] && aabb1_low[2] < aabb1_upp[2]); + return !(aabb0_upp[0] < aabb1_low[0]) && !(aabb0_low[0] > aabb1_upp[0]) + && !(aabb0_upp[1] < aabb1_low[1]) && !(aabb0_low[1] > aabb1_upp[1]) + && !(aabb0_upp[2] < aabb1_low[2]) && !(aabb0_low[2] > aabb1_upp[2]); +} + +static void +cloud_vox_get_particle + (const size_t xyz[3], + float vox[], + const struct build_tree_context* ctx) +{ + const struct htcp_desc* htcp_desc; + size_t ivox[3]; + size_t igrid_low[3], igrid_upp[3]; + double vox_low[3], vox_upp[3]; + double low[3], upp[3]; + double rct; + double ka, ks, kext; + double ka_min, ka_max; + double ks_min, ks_max; + double kext_min, kext_max; + double rho_da; /* Dry air density */ + double Ca_avg; + double Cs_avg; + double ipart; + size_t i; + ASSERT(xyz && vox && ctx); + + i = ctx->iband - ctx->sky->sw_bands_range[0]; + htcp_desc = &ctx->sky->htcp_desc; + + /* Fetch the optical properties of the spectral band */ + Ca_avg = ctx->sky->sw_bands[i].Ca_avg; + Cs_avg = ctx->sky->sw_bands[i].Cs_avg; + + /* Compute the AABB of the SVX voxel */ + vox_low[0] = (double)xyz[0] * ctx->vxsz[0] + htcp_desc->lower[0]; + vox_low[1] = (double)xyz[1] * ctx->vxsz[1] + htcp_desc->lower[1]; + vox_low[2] = (double)xyz[2] * ctx->vxsz[2] + htcp_desc->lower[2]; + vox_upp[0] = vox_low[0] + ctx->vxsz[0]; + vox_upp[1] = vox_low[1] + ctx->vxsz[1]; + vox_upp[2] = vox_low[2] + ctx->vxsz[2]; + + /* Compute the *inclusive* bounds of the indices of cloud grid overlapped by + * the SVX voxel in X and Y */ + low[0] = (vox_low[0]-htcp_desc->lower[0])/htcp_desc->vxsz_x; + low[1] = (vox_low[1]-htcp_desc->lower[1])/htcp_desc->vxsz_x; + upp[0] = (vox_upp[0]-htcp_desc->lower[0])/htcp_desc->vxsz_y; + upp[1] = (vox_upp[1]-htcp_desc->lower[1])/htcp_desc->vxsz_y; + igrid_low[0] = (size_t)low[0]; + igrid_low[1] = (size_t)low[1]; + igrid_upp[0] = (size_t)upp[0] - (modf(upp[0], &ipart)==0); + igrid_upp[1] = (size_t)upp[1] - (modf(upp[1], &ipart)==0); + ASSERT(igrid_low[0] <= igrid_upp[0]); + ASSERT(igrid_low[1] <= igrid_upp[1]); + + if(!ctx->sky->htcp_desc.irregular_z) { /* 1 LES voxel <=> 1 SVX voxel */ + /* Compute the *inclusive* bounds of the indices of cloud grid overlapped by + * the SVX voxel along the Z axis */ + low[2] = (vox_low[2]-htcp_desc->lower[2])/htcp_desc->vxsz_z[0]; + upp[2] = (vox_upp[2]-htcp_desc->lower[2])/htcp_desc->vxsz_z[0]; + igrid_low[2] = (size_t)low[2]; + igrid_upp[2] = (size_t)upp[2] - (modf(upp[2], &ipart)==0); + ASSERT(igrid_low[2] <= igrid_upp[2]); + + /* Prepare the iteration over the grid voxels overlapped by the SVX voxel */ + ka_min = ks_min = kext_min = DBL_MAX; + ka_max = ks_max = kext_max =-DBL_MAX; + + /* Iterate over the grid voxels overlapped by the SVX voxel */ + FOR_EACH(ivox[0], igrid_low[0], igrid_upp[0]+1) { + FOR_EACH(ivox[1], igrid_low[1], igrid_upp[1]+1) { + FOR_EACH(ivox[2], igrid_low[2], igrid_upp[2]+1) { + /* Compute the radiative properties */ + rho_da = cloud_dry_air_density(htcp_desc, ivox); + rct = htcp_desc_RCT_at(htcp_desc, ivox[0], ivox[1], ivox[2], 0); + ka = Ca_avg * rho_da * rct; + ks = Cs_avg * rho_da * rct; + kext = ka + ks; + /* Update the boundaries of the radiative properties */ + ka_min = MMIN(ka_min, ka); + ka_max = MMAX(ka_max, ka); + ks_min = MMIN(ks_min, ks); + ks_max = MMAX(ks_max, ks); + kext_min = MMIN(kext_min, kext); + kext_max = MMAX(kext_max, kext); + #ifndef NDEBUG + { + double tmp_low[3], tmp_upp[3]; + htcp_desc_get_voxel_aabb + (&ctx->sky->htcp_desc, ivox[0], ivox[1], ivox[2], tmp_low, tmp_upp); + ASSERT(aabb_intersect(tmp_low, tmp_upp, vox_low, vox_upp)); + } + #endif + } + } + } + } else { + double pos_z; + size_t ilut_low, ilut_upp; + size_t ilut; + size_t ivox_z_prev = SIZE_MAX; + + /* Compute the *inclusive* bounds of the indices of the LUT cells + * overlapped by the SVX voxel */ + ilut_low = (size_t)((vox_low[2]-htcp_desc->lower[2])/ctx->sky->lut_cell_sz); + ilut_upp = (size_t)((vox_upp[2]-htcp_desc->lower[2])/ctx->sky->lut_cell_sz); + ASSERT(ilut_low <= ilut_upp); + + /* Prepare the iteration over the LES voxels overlapped by the SVX voxel */ + ka_min = ks_min = kext_min = DBL_MAX; + ka_max = ks_max = kext_max =-DBL_MAX; + ivox_z_prev = SIZE_MAX; + pos_z = vox_low[2]; + ASSERT(pos_z >= (double)ilut_low * ctx->sky->lut_cell_sz); + ASSERT(pos_z <= (double)ilut_upp * ctx->sky->lut_cell_sz); + + /* Iterate over the LUT cells overlapped by the voxel */ + FOR_EACH(ilut, ilut_low, ilut_upp+1) { + const struct split* split = darray_split_cdata_get(&ctx->sky->svx2htcp_z)+ilut; + ASSERT(ilut < darray_split_size_get(&ctx->sky->svx2htcp_z)); + + ivox[2] = pos_z <= split->height ? split->index : split->index + 1; + if(ivox[2] >= ctx->sky->htcp_desc.spatial_definition[2] + && eq_eps(pos_z, split->height, 1.e-6)) { /* Handle numerical inaccuracy */ + ivox[2] = split->index; + } + + /* Compute the upper bound of the *next* LUT cell clamped to the voxel + * upper bound. Note that the upper bound of the current LUT cell is + * the lower bound of the next cell, i.e. (ilut+1)*lut_cell_sz. The + * upper bound of the next cell is thus the lower bound of the cell + * following the next cell, i.e. (ilut+2)*lut_cell_sz */ + pos_z = MMIN((double)(ilut+2)*ctx->sky->lut_cell_sz, vox_upp[2]); + + /* Does the LUT cell overlap an already handled LES voxel? */ + if(ivox[2] == ivox_z_prev) continue; + ivox_z_prev = ivox[2]; + + FOR_EACH(ivox[0], igrid_low[0], igrid_upp[0]+1) { + FOR_EACH(ivox[1], igrid_low[1], igrid_upp[1]+1) { + + /* Compute the radiative properties */ + rho_da = cloud_dry_air_density(htcp_desc, ivox); + rct = htcp_desc_RCT_at(htcp_desc, ivox[0], ivox[1], ivox[2], 0); + ka = Ca_avg * rho_da * rct; + ks = Cs_avg * rho_da * rct; + kext = ka + ks; + + /* Update the boundaries of the radiative properties */ + ka_min = MMIN(ka_min, ka); + ka_max = MMAX(ka_max, ka); + ks_min = MMIN(ks_min, ks); + ks_max = MMAX(ks_max, ks); + kext_min = MMIN(kext_min, kext); + kext_max = MMAX(kext_max, kext); + } + } + } + } + + /* Ensure that the single precision bounds include their double precision + * version. */ + if(ka_min != (float)ka_min) ka_min = nextafterf((float)ka_min,-FLT_MAX); + if(ka_max != (float)ka_max) ka_max = nextafterf((float)ka_max, FLT_MAX); + if(ks_min != (float)ks_min) ks_min = nextafterf((float)ks_min,-FLT_MAX); + if(ks_max != (float)ks_max) ks_max = nextafterf((float)ks_max, FLT_MAX); + if(kext_min != (float)kext_min) kext_min = nextafterf((float)kext_min,-FLT_MAX); + if(kext_max != (float)kext_max) kext_max = nextafterf((float)kext_max, FLT_MAX); + + vox_set(vox, HTSKY_CPNT_PARTICLES, HTSKY_Ka, HTSKY_SVX_MIN, (float)ka_min); + vox_set(vox, HTSKY_CPNT_PARTICLES, HTSKY_Ka, HTSKY_SVX_MAX, (float)ka_max); + vox_set(vox, HTSKY_CPNT_PARTICLES, HTSKY_Ks, HTSKY_SVX_MIN, (float)ks_min); + vox_set(vox, HTSKY_CPNT_PARTICLES, HTSKY_Ks, HTSKY_SVX_MAX, (float)ks_max); + vox_set(vox, HTSKY_CPNT_PARTICLES, HTSKY_Kext, HTSKY_SVX_MIN, (float)kext_min); + vox_set(vox, HTSKY_CPNT_PARTICLES, HTSKY_Kext, HTSKY_SVX_MAX, (float)kext_max); +} + +static void +cloud_vox_get_gas + (const size_t xyz[3], + float vox[], + const struct build_tree_context* ctx) +{ + const struct htcp_desc* htcp_desc; + size_t ivox[3]; + size_t igrid_low[3], igrid_upp[3]; + struct htgop_layer layer; + struct htgop_layer_sw_spectral_interval band; + size_t ilayer; + size_t layer_range[2]; + double x_h2o_range[2]; + double low[3], upp[3]; + double vox_low[3], vox_upp[3]; /* Voxel AABB */ + double ka_min, ka_max; + double ks_min, ks_max; + double kext_min, kext_max; + double x_h2o; + double ipart; + ASSERT(xyz && vox && ctx); + + htcp_desc = &ctx->sky->htcp_desc; + + /* Compute the AABB of the SVX voxel */ + vox_low[0] = (double)xyz[0] * ctx->vxsz[0] + htcp_desc->lower[0]; + vox_low[1] = (double)xyz[1] * ctx->vxsz[1] + htcp_desc->lower[1]; + vox_low[2] = (double)xyz[2] * ctx->vxsz[2] + htcp_desc->lower[2]; + vox_upp[0] = vox_low[0] + ctx->vxsz[0]; + vox_upp[1] = vox_low[1] + ctx->vxsz[1]; + vox_upp[2] = vox_low[2] + ctx->vxsz[2]; + + /* Compute the *inclusive* bounds of the indices of cloud grid overlapped by + * the SVX voxel in X and Y */ + low[0] = (vox_low[0]-htcp_desc->lower[0])/htcp_desc->vxsz_x; + low[1] = (vox_low[1]-htcp_desc->lower[1])/htcp_desc->vxsz_x; + upp[0] = (vox_upp[0]-htcp_desc->lower[0])/htcp_desc->vxsz_y; + upp[1] = (vox_upp[1]-htcp_desc->lower[1])/htcp_desc->vxsz_y; + igrid_low[0] = (size_t)low[0]; + igrid_low[1] = (size_t)low[1]; + igrid_upp[0] = (size_t)upp[0] - (modf(upp[0], &ipart)==0); + igrid_upp[1] = (size_t)upp[1] - (modf(upp[1], &ipart)==0); + ASSERT(igrid_low[0] <= igrid_upp[0]); + ASSERT(igrid_low[1] <= igrid_upp[1]); + + /* Define the xH2O range from the LES data */ + if(!ctx->sky->htcp_desc.irregular_z) { /* 1 LES voxel <=> 1 SVX voxel */ + /* Compute the *inclusive* bounds of the indices of cloud grid overlapped by + * the SVX voxel in Z */ + low[2] = (vox_low[2]-htcp_desc->lower[2])/htcp_desc->vxsz_z[0]; + upp[2] = (vox_upp[2]-htcp_desc->lower[2])/htcp_desc->vxsz_z[0]; + igrid_low[2] = (size_t)low[2]; + igrid_upp[2] = (size_t)upp[2] - (modf(upp[2], &ipart)==0); + ASSERT(igrid_low[2] <= igrid_upp[2]); + + /* Prepare the iteration overt the grid voxels overlapped by the SVX voxel */ + x_h2o_range[0] = DBL_MAX; + x_h2o_range[1] =-DBL_MAX; + + FOR_EACH(ivox[0], igrid_low[0], igrid_upp[0]+1) { + FOR_EACH(ivox[1], igrid_low[1], igrid_upp[1]+1) { + FOR_EACH(ivox[2], igrid_low[2], igrid_upp[2]+1) { + + /* Compute the xH2O for the current LES voxel */ + x_h2o = cloud_water_vapor_molar_fraction(htcp_desc, ivox); + + /* Update the xH2O range of the SVX voxel */ + x_h2o_range[0] = MMIN(x_h2o, x_h2o_range[0]); + x_h2o_range[1] = MMAX(x_h2o, x_h2o_range[1]); + #ifndef NDEBUG + { + double tmp_low[3], tmp_upp[3]; + htcp_desc_get_voxel_aabb + (&ctx->sky->htcp_desc, ivox[0], ivox[1], ivox[2], tmp_low, tmp_upp); + ASSERT(aabb_intersect(tmp_low, tmp_upp, vox_low, vox_upp)); + } + #endif + } + } + } + } else { /* A SVX voxel can be overlapped by 2 LES voxels */ + double pos_z; + size_t ilut_low, ilut_upp; + size_t ilut; + size_t ivox_z_prev; + ASSERT(xyz[2] < darray_split_size_get(&ctx->sky->svx2htcp_z)); + + /* Compute the *inclusive* bounds of the indices of the LUT cells + * overlapped by the SVX voxel */ + ilut_low = (size_t)((vox_low[2] - htcp_desc->lower[2]) / ctx->sky->lut_cell_sz); + ilut_upp = (size_t)((vox_upp[2] - htcp_desc->lower[2]) / ctx->sky->lut_cell_sz); + ASSERT(ilut_low <= ilut_upp); + + /* Prepare the iteration over the LES voxels overlapped by the SVX voxel */ + x_h2o_range[0] = DBL_MAX; + x_h2o_range[1] =-DBL_MAX; + ivox_z_prev = SIZE_MAX; + pos_z = vox_low[2]; + ASSERT(pos_z >= (double)ilut_low * ctx->sky->lut_cell_sz); + ASSERT(pos_z <= (double)ilut_upp * ctx->sky->lut_cell_sz); + + /* Iterate over the LUT cells overlapped by the voxel */ + FOR_EACH(ilut, ilut_low, ilut_upp+1) { + const struct split* split = darray_split_cdata_get(&ctx->sky->svx2htcp_z)+ilut; + ASSERT(ilut < darray_split_size_get(&ctx->sky->svx2htcp_z)); + + ivox[2] = pos_z <= split->height ? split->index : split->index + 1; + if(ivox[2] >= ctx->sky->htcp_desc.spatial_definition[2] + && eq_eps(pos_z, split->height, 1.e-6)) { /* Handle numerical inaccuracy */ + ivox[2] = split->index; + } + + /* Compute the upper bound of the *next* LUT cell clamped to the voxel + * upper bound. Note that the upper bound of the current LUT cell is + * the lower bound of the next cell, i.e. (ilut+1)*lut_cell_sz. The + * upper bound of the next cell is thus the lower bound of the cell + * following the next cell, i.e. (ilut+2)*lut_cell_sz */ + pos_z = MMIN((double)(ilut+2)*ctx->sky->lut_cell_sz, vox_upp[2]); + + /* Does the LUT voxel overlap an already handled LES voxel? */ + if(ivox[2] == ivox_z_prev) continue; + ivox_z_prev = ivox[2]; + + FOR_EACH(ivox[0], igrid_low[0], igrid_upp[0]+1) { + FOR_EACH(ivox[1], igrid_low[1], igrid_upp[1]+1) { + + /* Compute the xH2O for the current LES voxel */ + x_h2o = cloud_water_vapor_molar_fraction(&ctx->sky->htcp_desc, ivox); + + /* Update the xH2O range of the SVX voxel */ + x_h2o_range[0] = MMIN(x_h2o, x_h2o_range[0]); + x_h2o_range[1] = MMAX(x_h2o, x_h2o_range[1]); + } + } + } + } + + /* Define the atmospheric layers overlapped by the SVX voxel */ + HTGOP(position_to_layer_id(ctx->sky->htgop, vox_low[2], &layer_range[0])); + HTGOP(position_to_layer_id(ctx->sky->htgop, vox_upp[2], &layer_range[1])); + + ka_min = ks_min = kext_min = DBL_MAX; + ka_max = ks_max = kext_max =-DBL_MAX; + + /* For each atmospheric layer that overlaps the SVX voxel ... */ + FOR_EACH(ilayer, layer_range[0], layer_range[1]+1) { + double k[2]; + + HTGOP(get_layer(ctx->sky->htgop, ilayer, &layer)); + + /* ... retrieve the considered spectral interval */ + HTGOP(layer_get_sw_spectral_interval(&layer, ctx->iband, &band)); + ASSERT(ctx->quadrature_range[0] <= ctx->quadrature_range[1]); + ASSERT(ctx->quadrature_range[1] < band.quadrature_length); + + /* ... and compute the radiative properties and upd their bounds */ + HTGOP(layer_sw_spectral_interval_quadpoints_get_ka_bounds + (&band, ctx->quadrature_range, x_h2o_range, k)); + ka_min = MMIN(ka_min, k[0]); + ka_max = MMAX(ka_max, k[1]); + HTGOP(layer_sw_spectral_interval_quadpoints_get_ks_bounds + (&band, ctx->quadrature_range, x_h2o_range, k)); + ks_min = MMIN(ks_min, k[0]); + ks_max = MMAX(ks_max, k[1]); + HTGOP(layer_sw_spectral_interval_quadpoints_get_kext_bounds + (&band, ctx->quadrature_range, x_h2o_range, k)); + kext_min = MMIN(kext_min, k[0]); + kext_max = MMAX(kext_max, k[1]); + } + + /* Ensure that the single precision bounds include their double precision + * version. */ + if(ka_min != (float)ka_min) ka_min = nextafterf((float)ka_min,-FLT_MAX); + if(ka_max != (float)ka_max) ka_max = nextafterf((float)ka_max, FLT_MAX); + if(ks_min != (float)ks_min) ks_min = nextafterf((float)ks_min,-FLT_MAX); + if(ks_max != (float)ks_max) ks_max = nextafterf((float)ks_max, FLT_MAX); + if(kext_min != (float)kext_min) kext_min = nextafterf((float)kext_min,-FLT_MAX); + if(kext_max != (float)kext_max) kext_max = nextafterf((float)kext_max, FLT_MAX); + + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Ka, HTSKY_SVX_MIN, (float)ka_min); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Ka, HTSKY_SVX_MAX, (float)ka_max); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Ks, HTSKY_SVX_MIN, (float)ks_min); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Ks, HTSKY_SVX_MAX, (float)ks_max); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Kext, HTSKY_SVX_MIN, (float)kext_min); + vox_set(vox, HTSKY_CPNT_GAS, HTSKY_Kext, HTSKY_SVX_MAX, (float)kext_max); +} + +static void +cloud_vox_get(const size_t xyz[3], void* dst, void* context) +{ + struct build_tree_context* ctx = context; + ASSERT(context); + cloud_vox_get_particle(xyz, dst, ctx); + cloud_vox_get_gas(xyz, dst, ctx); +} + +static void +cloud_vox_merge(void* dst, const void* voxels[], const size_t nvoxs, void* context) +{ + ASSERT(dst && voxels && nvoxs); + (void)context; + vox_merge_component(dst, HTSKY_CPNT_PARTICLES, (const float**)voxels, nvoxs); + vox_merge_component(dst, HTSKY_CPNT_GAS, (const float**)voxels, nvoxs); +} + +static int +cloud_vox_challenge_merge + (const struct svx_voxel voxels[], const size_t nvoxs, void* ctx) +{ + ASSERT(voxels); + return vox_challenge_merge_component(HTSKY_CPNT_PARTICLES, voxels, nvoxs, ctx) + && vox_challenge_merge_component(HTSKY_CPNT_GAS, voxels, nvoxs, ctx); +} + +/******************************************************************************* + * Local functions + ******************************************************************************/ +static res_T +cloud_setup + (struct htsky* sky, + const char* htcp_filename, + const char* htgop_filename, + const char* htmie_filename, + const double grid_max_definition[3], + const double optical_thickness_threshold) +{ + struct darray_specdata specdata; + const size_t* raw_def; + size_t nvoxs[3]; + double vxsz[3]; + double low[3]; + double upp[3]; + int64_t ispecdata; + int32_t progress; + size_t nbands; + size_t i; + ATOMIC nbuilt_octrees = 0; + ATOMIC res = RES_OK; + ASSERT(grid_max_definition); + ASSERT(sky && sky->sw_bands && optical_thickness_threshold >= 0); + + darray_specdata_init(sky->allocator, &specdata); + + res = htcp_get_desc(sky->htcp, &sky->htcp_desc); + if(res != RES_OK) { + log_err(sky, "could not retrieve the HTCP descriptor.\n"); + goto error; + } + + log_info(sky, "Clouds bounding box: {%g, %g, %g} / {%g, %g, %g}.\n", + SPLIT3(sky->htcp_desc.lower), SPLIT3(sky->htcp_desc.upper)); + + /* Define the number of voxels */ + raw_def = sky->htcp_desc.spatial_definition; + nvoxs[0] = MMIN(raw_def[0], grid_max_definition[0]); + nvoxs[1] = MMIN(raw_def[1], grid_max_definition[1]); + nvoxs[2] = MMIN(raw_def[2], grid_max_definition[2]); + + /* Define the octree AABB excepted for the Z dimension */ + low[0] = sky->htcp_desc.lower[0]; + low[1] = sky->htcp_desc.lower[1]; + low[2] = sky->htcp_desc.lower[2]; + upp[0] = low[0] + (double)raw_def[0] * sky->htcp_desc.vxsz_x; + upp[1] = low[1] + (double)raw_def[1] * sky->htcp_desc.vxsz_y; + + if(!sky->htcp_desc.irregular_z) { + /* Regular voxel size along the Z dimension: compute its upper boundary as + * the others dimensions */ + upp[2] = low[2] + (double)raw_def[2] * sky->htcp_desc.vxsz_z[0]; + + /* TODO move the following block in a separate function */ + } else { /* Irregular voxel size along Z */ + double len_z; + size_t nsplits; + size_t iz, iz2;; + + /* Find the min voxel size along Z and compute the length of a Z column */ + len_z = 0; + sky->lut_cell_sz = DBL_MAX; + FOR_EACH(iz, 0, sky->htcp_desc.spatial_definition[2]) { + len_z += sky->htcp_desc.vxsz_z[iz]; + sky->lut_cell_sz = MMIN(sky->lut_cell_sz, sky->htcp_desc.vxsz_z[iz]); + } + /* Allocate the svx2htcp LUT. This LUT is a regular table whose absolute + * size is greater or equal to a Z column in the htcp file. The size of its + * cells is the minimal voxel size in Z of the htcp file */ + nsplits = (size_t)ceil(len_z / sky->lut_cell_sz); + res = darray_split_resize(&sky->svx2htcp_z, nsplits); + if(res != RES_OK) { + log_err(sky, + "could not allocate the table mapping regular to irregular Z.\n"); + goto error; + } + /* Setup the svx2htcp LUT. Each LUT entry stores the index of the current Z + * voxel in the htcp file that overlaps the entry lower bound as well as the + * lower bound in Z of the next htcp voxel. */ + iz2 = 0; + upp[2] = low[2] + sky->htcp_desc.vxsz_z[iz2]; + FOR_EACH(iz, 0, nsplits) { + const double upp_z = (double)(iz + 1) * sky->lut_cell_sz + low[2]; + darray_split_data_get(&sky->svx2htcp_z)[iz].index = iz2; + darray_split_data_get(&sky->svx2htcp_z)[iz].height = upp[2]; + if(upp_z >= upp[2] && iz + 1 < nsplits) { + ASSERT(iz2 + 1 < sky->htcp_desc.spatial_definition[2]); + upp[2] += sky->htcp_desc.vxsz_z[++iz2]; + } + } + ASSERT(eq_eps(upp[2] - low[2], len_z, 1.e-6)); + } + + /* Setup the build context */ + vxsz[0] = sky->htcp_desc.upper[0] - sky->htcp_desc.lower[0]; + vxsz[1] = sky->htcp_desc.upper[1] - sky->htcp_desc.lower[1]; + vxsz[2] = sky->htcp_desc.upper[2] - sky->htcp_desc.lower[2]; + vxsz[0] = vxsz[0] / (double)nvoxs[0]; + vxsz[1] = vxsz[1] / (double)nvoxs[1]; + vxsz[2] = vxsz[2] / (double)nvoxs[2]; + + /* Create as many cloud data structure than considered SW spectral bands */ + nbands = htsky_get_sw_spectral_bands_count(sky); + sky->clouds = MEM_CALLOC(sky->allocator, nbands, sizeof(*sky->clouds)); + if(!sky->clouds) { + log_err(sky, + "could not create the list of per SW band cloud data structure.\n"); + res = RES_MEM_ERR; + goto error; + } + + /* Compute how many octree are going to be built */ + FOR_EACH(i, 0, nbands) { + struct htgop_spectral_interval band; + const size_t iband = i + sky->sw_bands_range[0]; + size_t iquad; + + HTGOP(get_sw_spectral_interval(sky->htgop, iband, &band)); + + sky->clouds[i] = MEM_CALLOC(sky->allocator, + band.quadrature_length, sizeof(*sky->clouds[i])); + if(!sky->clouds[i]) { + log_err(sky, + "could not create the list of per quadrature point cloud data " + "for the band %lu.\n", (unsigned long)iband); + res = RES_MEM_ERR; + goto error; + } + + FOR_EACH(iquad, 0, band.quadrature_length) { + struct spectral_data spectral_data; + spectral_data.iband = iband; + spectral_data.iquad = iquad; + res = darray_specdata_push_back(&specdata, &spectral_data); + if(res != RES_OK) { + log_err(sky, + "could not register the quadrature point %lu of the spectral band " + "%lu .\n", (unsigned long)iband, (unsigned long)iquad); + goto error; + } + } + } + + progress = 0; + omp_set_num_threads((int)sky->nthreads); + #pragma omp parallel for schedule(dynamic, 1/*chunksize*/) + for(ispecdata=0; + (size_t)ispecdata<darray_specdata_size_get(&specdata); + ++ispecdata) { + struct svx_voxel_desc vox_desc = SVX_VOXEL_DESC_NULL; + struct build_tree_context ctx = BUILD_TREE_CONTEXT_NULL; + const size_t iband = darray_specdata_data_get(&specdata)[ispecdata].iband; + const size_t iquad = darray_specdata_data_get(&specdata)[ispecdata].iquad; + const size_t id = iband - sky->sw_bands_range[0]; + int32_t pcent; + size_t n; + res_T res_local = RES_OK; + + if(ATOMIC_GET(&res) != RES_OK) continue; + + /* Setup the build context */ + ctx.sky = sky; + ctx.vxsz[0] = vxsz[0]; + ctx.vxsz[1] = vxsz[1]; + ctx.vxsz[2] = vxsz[2]; + ctx.tau_threshold = optical_thickness_threshold; + ctx.iband = iband; + ctx.quadrature_range[0] = iquad; + ctx.quadrature_range[1] = iquad; + + /* Setup the voxel descriptor */ + vox_desc.get = cloud_vox_get; + vox_desc.merge = cloud_vox_merge; + vox_desc.challenge_merge = cloud_vox_challenge_merge; + vox_desc.context = &ctx; + vox_desc.size = sizeof(float) * NFLOATS_PER_VOXEL; + + /* Create the octree */ + res_local = svx_octree_create + (sky->svx, low, upp, nvoxs, &vox_desc, &sky->clouds[id][iquad].octree); + + if(res_local != RES_OK) { + log_err(sky, + "could not create the octree of the cloud properties for the band %lu.\n", + (unsigned long)ctx.iband); + ATOMIC_SET(&res, res_local); + continue; + } + + /* Fetch the octree descriptor for future use */ + SVX(tree_get_desc + (sky->clouds[id][iquad].octree, &sky->clouds[id][iquad].octree_desc)); + + /* Update the progress message */ + n = (size_t)ATOMIC_INCR(&nbuilt_octrees); + pcent = (int32_t)(n * 100 / darray_specdata_size_get(&specdata)); + + #pragma omp critical + if(pcent > progress) { + progress = pcent; + log_info(sky, "\033[2K\rCompute data & building octree: %3d%%", pcent); + } + } + log_info(sky, "\033[2K\rCompute data & building octree: 100%%\n"); + + +exit: + darray_specdata_release(&specdata); + return (res_T)res; +error: + clean_clouds(sky); + darray_split_clear(&sky->svx2htcp_z); + goto exit; +} + +void +cloud_clean(struct htsky* sky) +{ + size_t nbands; + size_t i; + ASSERT(sky); + + if(!sky->clouds) return; + + nbands = htsky_get_sw_spectral_bands_count(sky); + FOR_EACH(i, 0, nbands) { + struct htgop_spectral_interval band; + size_t iband; + size_t iquad; + + iband = sky->sw_bands_range[0] + i; + HTGOP(get_sw_spectral_interval(sky->htgop, iband, &band)); + + if(!sky->clouds[i]) continue; + + FOR_EACH(iquad, 0, band.quadrature_length) { + if(sky->clouds[i][iquad].octree) { + SVX(tree_ref_put(sky->clouds[i][iquad].octree)); + sky->clouds[i][iquad].octree = NULL; + } + } + MEM_RM(sky->allocator, sky->clouds[i]); + } + MEM_RM(sky->allocator, sky->clouds); + sky->clouds = NULL; +} + + diff --git a/src/htsky_cloud.h b/src/htsky_cloud.h @@ -0,0 +1,40 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#ifndef HTSKY_CLOUD_H +#define HTSKY_CLOUD_H + +#include <star/svx.h> /* svx_tree_desc */ + +struct htsky; + +struct cloud { + struct svx_tree* octree; + struct svx_tree_desc octree_desc; +}; + +extern LOCAL_SYM res_T +cloud_setup + (struct htsky* sky, + const char* htcp_filename, + const char* htgop_filename, + const char* htmie_filename, + const double optical_thickness_threshold); + +extern LOCAL_SYM void +cloud_clean + (struct htsky* sky); + +#endif /* HTSKY_CLOUDS_H */ diff --git a/src/htsky_dump_cloud_vtk.c b/src/htsky_dump_cloud_vtk.c @@ -0,0 +1,228 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#include "htsky.h" +#include "htsky_c.h" + +#include <high_tune/htgop.h> + +#include <rsys/dynamic_array_double.h> +#include <rsys/hash_table.h> + +#include <star/svx.h> + +struct vertex { + double x; + double y; + double z; +}; + +static char +vertex_eq(const struct vertex* v0, const struct vertex* v1) +{ + return eq_eps(v0->x, v1->x, 1.e-6) + && eq_eps(v0->y, v1->y, 1.e-6) + && eq_eps(v0->z, v1->z, 1.e-6); +} + +/* Generate the htable_vertex data structure */ +#define HTABLE_NAME vertex +#define HTABLE_KEY struct vertex +#define HTABLE_DATA size_t +#define HTABLE_KEY_FUNCTOR_EQ vertex_eq +#include <rsys/hash_table.h> + +/* Temporary data structure used to dump the octree data into a VTK file */ +struct octree_data { + struct htable_vertex vertex2id; /* Map a coordinate to its vertex id */ + struct darray_double vertices; /* Array of unique vertices */ + struct darray_double data; /* List of registered leaf data */ + struct darray_size_t cells; /* Ids of the cell vertices */ + size_t iband; /* Index of the band that overlaps the CIE XYZ color space */ + size_t iquad; /* Index of the quadrature point into the band */ + const struct htsky* sky; +}; + +/******************************************************************************* + * Helper functions + ******************************************************************************/ +static INLINE void +octree_data_init + (const struct htsky* sky, + const size_t iband, + const size_t iquad, + struct octree_data* data) +{ + ASSERT(data); + ASSERT(iband >= sky->sw_bands_range[0]); + ASSERT(iband <= sky->sw_bands_range[1]); + (void)iquad; + htable_vertex_init(sky->allocator, &data->vertex2id); + darray_double_init(sky->allocator, &data->vertices); + darray_double_init(sky->allocator, &data->data); + darray_size_t_init(sky->allocator, &data->cells); + data->sky = sky; + data->iband = iband; + data->iquad = iquad; +} + +static INLINE void +octree_data_release(struct octree_data* data) +{ + ASSERT(data); + htable_vertex_release(&data->vertex2id); + darray_double_release(&data->vertices); + darray_double_release(&data->data); + darray_size_t_release(&data->cells); +} + +static INLINE void +register_leaf + (const struct svx_voxel* leaf, + const size_t ileaf, + void* context) +{ + struct octree_data* ctx = context; + struct vertex v[8]; + double kext_min; + double kext_max; + int i; + ASSERT(leaf && ctx); + (void)ileaf; + + /* Compute the leaf vertices */ + v[0].x = leaf->lower[0]; v[0].y = leaf->lower[1]; v[0].z = leaf->lower[2]; + v[1].x = leaf->upper[0]; v[1].y = leaf->lower[1]; v[1].z = leaf->lower[2]; + v[2].x = leaf->lower[0]; v[2].y = leaf->upper[1]; v[2].z = leaf->lower[2]; + v[3].x = leaf->upper[0]; v[3].y = leaf->upper[1]; v[3].z = leaf->lower[2]; + v[4].x = leaf->lower[0]; v[4].y = leaf->lower[1]; v[4].z = leaf->upper[2]; + v[5].x = leaf->upper[0]; v[5].y = leaf->lower[1]; v[5].z = leaf->upper[2]; + v[6].x = leaf->lower[0]; v[6].y = leaf->upper[1]; v[6].z = leaf->upper[2]; + v[7].x = leaf->upper[0]; v[7].y = leaf->upper[1]; v[7].z = leaf->upper[2]; + + FOR_EACH(i, 0, 8) { + size_t *pid = htable_vertex_find(&ctx->vertex2id, v+i); + size_t id; + if(pid) { + id = *pid; + } else { /* Register the leaf vertex */ + id = darray_double_size_get(&ctx->vertices)/3; + CHK(RES_OK == htable_vertex_set(&ctx->vertex2id, v+i, &id)); + CHK(RES_OK == darray_double_push_back(&ctx->vertices, &v[i].x)); + CHK(RES_OK == darray_double_push_back(&ctx->vertices, &v[i].y)); + CHK(RES_OK == darray_double_push_back(&ctx->vertices, &v[i].z)); + } + /* Add the vertex id to the leaf cell */ + CHK(RES_OK == darray_size_t_push_back(&ctx->cells, &id)); + } + + /* Register the leaf data */ + kext_max = htsky_fetch_svx_voxel_property(ctx->sky, HTSKY_Kext, + HTSKY_SVX_MAX, HTSKY_CPNT_MASK_ALL, ctx->iband, ctx->iquad, leaf); + kext_min = htsky_fetch_svx_voxel_property(ctx->sky, HTSKY_Kext, + HTSKY_SVX_MIN, HTSKY_ALL_COMPONENTS, ctx->iband, ctx->iquad, leaf); + CHK(RES_OK == darray_double_push_back(&ctx->data, &kext_min)); + CHK(RES_OK == darray_double_push_back(&ctx->data, &kext_max)); +} + +/******************************************************************************* + * Exported functions + ******************************************************************************/ +res_T +htsky_dump_cloud_vtk + (const struct htsky* sky, + const size_t iband, /* Index of the spectral band */ + const size_t iquad, /* Index of the quadrature point */ + FILE* stream) +{ + const struct cloud* cloud; + struct htgop_spectral_interval specint; + struct octree_data data; + const double* leaf_data; + size_t nvertices; + size_t ncells; + size_t i; + ASSERT(sky && stream); + ASSERT(iband >= sky->sw_bands_range[0]); + ASSERT(iband <= sky->sw_bands_range[1]); + + if(!sky->is_cloudy) { + log_warn(sky, "%s: the sky has no cloud.\n", FUNC_NAME); + return RES_OK; + } + + i = iband - sky->sw_bands_range[0]; + + octree_data_init(sky, iband, iquad, &data); + cloud = &sky->clouds[i][iquad]; + + ASSERT(cloud->octree_desc.type == SVX_OCTREE); + + /* Register leaf data */ + SVX(tree_for_each_leaf(cloud->octree, register_leaf, &data)); + nvertices = darray_double_size_get(&data.vertices) / 3/*#coords per vertex*/; + ncells = darray_size_t_size_get(&data.cells)/8/*#ids per cell*/; + ASSERT(ncells == cloud->octree_desc.nleaves); + + /* Fetch the spectral interval descriptor */ + HTGOP(get_sw_spectral_interval(sky->htgop, iband, &specint)); + + /* Write headers */ + fprintf(stream, "# vtk DataFile Version 2.0\n"); + fprintf(stream, "Clouds optical properties in [%g, %g] nanometers\n", + wavenumber_to_wavelength(specint.wave_numbers[1]), + wavenumber_to_wavelength(specint.wave_numbers[0])); + fprintf(stream, "ASCII\n"); + fprintf(stream, "DATASET UNSTRUCTURED_GRID\n"); + + /* Write vertex coordinates */ + fprintf(stream, "POINTS %lu float\n", (unsigned long)nvertices); + FOR_EACH(i, 0, nvertices) { + fprintf(stream, "%g %g %g\n", + SPLIT3(darray_double_cdata_get(&data.vertices) + i*3)); + } + + /* Write the cells */ + fprintf(stream, "CELLS %lu %lu\n", + (unsigned long)ncells, + (unsigned long)(ncells*(8/*#verts per cell*/ + 1/*1st field of a cell*/))); + FOR_EACH(i, 0, ncells) { + fprintf(stream, "8 %lu %lu %lu %lu %lu %lu %lu %lu\n", + (unsigned long)darray_size_t_cdata_get(&data.cells)[i*8+0], + (unsigned long)darray_size_t_cdata_get(&data.cells)[i*8+1], + (unsigned long)darray_size_t_cdata_get(&data.cells)[i*8+2], + (unsigned long)darray_size_t_cdata_get(&data.cells)[i*8+3], + (unsigned long)darray_size_t_cdata_get(&data.cells)[i*8+4], + (unsigned long)darray_size_t_cdata_get(&data.cells)[i*8+5], + (unsigned long)darray_size_t_cdata_get(&data.cells)[i*8+6], + (unsigned long)darray_size_t_cdata_get(&data.cells)[i*8+7]); + } + + /* Write the cell type */ + fprintf(stream, "CELL_TYPES %lu\n", (unsigned long)ncells); + FOR_EACH(i, 0, ncells) fprintf(stream, "11\n"); + + /* Write the cell data */ + leaf_data = darray_double_cdata_get(&data.data); + fprintf(stream, "CELL_DATA %lu\n", (unsigned long)ncells); + fprintf(stream, "SCALARS Kext double 2\n"); + fprintf(stream, "LOOKUP_TABLE default\n"); + FOR_EACH(i, 0, ncells) { + fprintf(stream, "%g %g\n", leaf_data[i*2+0], leaf_data[i*2+1]); + } + octree_data_release(&data); + return RES_OK; +} + diff --git a/src/htsky_file_sys.c b/src/htsky_file_sys.c @@ -0,0 +1,232 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#define _POSIX_C_SOURCE 200809L /* O_DIRECTORY support */ + +#include "htsky_c.h" +#include "htsky_file_sys.h" + +#include <rsys/str.h> + +#include <errno.h> +#include <fcntl.h> /* open */ +#include <libgen.h> /* basename */ +#include <sys/stat.h> /* S_IRUSR & S_IWUSR */ +#include <sys/time.h> /* timespec */ +#include <unistd.h> + +/******************************************************************************* + * Helper functions + ******************************************************************************/ +static res_T +open_file_stamp + (struct htsky* sky, + const char* filename, + struct stat* out_stat, /* Stat of the submitted filename */ + int* out_fd, /* Descriptor of the opened file. Must be closed by the caller */ + struct str* stamp_filename) +{ + struct stat statbuf; + struct str str; + int err; + int fd = -1; + res_T res = RES_OK; + ASSERT(sky && filename && out_fd && out_stat && stamp_filename); + + str_init(sky->allocator, &str); + + err = stat(filename, &statbuf); + if(err) { + log_err(sky, "%s: could not stat the file -- %s.\n", + filename, strerror(errno)); + res = RES_IO_ERR; + goto error; + } + + if(!S_ISREG(statbuf.st_mode)) { + log_err(sky, "%s: not a regular file.\n", filename); + res = RES_IO_ERR; + goto error; + } + + res = create_directory(sky, ".htsky/"); + if(res != RES_OK) goto error; + + #define CHK_STR(Func, ErrMsg) { \ + res = str_##Func; \ + if(res != RES_OK) { \ + htrdr_log_err(htrdr, "%s: "ErrMsg"\n", filename); \ + goto error; \ + } \ + } (void)0 + CHK_STR(set(&str, filename), "could not copy the filename"); + CHK_STR(set(&str, basename(str_get(&str))), "could not setup the basename"); + CHK_STR(insert(&str, 0, ".htsky/"), "could not setup the stamp directory"); + CHK_STR(append(&str, ".stamp"), "could not setup the stamp extension"); + #undef CHK_STR + + fd = open(str_cget(&str), O_CREAT|O_RDWR, S_IRUSR|S_IWUSR); + if(fd < 0) { + log_err(sky, "%s: could not open/create the file -- %s.\n", + str_cget(&str), strerror(errno)); + res = RES_IO_ERR; + goto error; + } + + CHK(str_copy_and_clear(stamp_filename, &str) == RES_OK); + +exit: + str_release(&str); + *out_fd = fd; + *out_stat = statbuf; + return res; +error: + if(fd >= 0) { + CHK(close(fd) == 0); + fd = -1; + } + goto exit; +} + +/******************************************************************************* + * Local functions + ******************************************************************************/ +res_T +is_file_updated(struct htsky* sky, const char* filename, int* out_upd) +{ + struct str stamp_filename; + struct stat statbuf; + ssize_t n; + off_t size; + struct timespec mtime; + int fd = -1; + int upd = 1; + res_T res = RES_OK; + ASSERT(sky && filename && out_upd); + + str_init(sky->allocator, &stamp_filename); + + res = open_file_stamp(sky, filename, &statbuf, &fd, &stamp_filename); + if(res != RES_OK) goto error; + + n = read(fd, &mtime, sizeof(mtime)); + if(n < 0) { + log_err(sky, "%s: could not read the `mtime' data of the file -- %s.\n", + str_cget(&stamp_filename), strerror(errno)); + res = RES_IO_ERR; + goto error; + } + + upd = (size_t)n != sizeof(mtime) + || mtime.tv_nsec != statbuf.st_mtim.tv_nsec + || mtime.tv_sec != statbuf.st_mtim.tv_sec; + + if(!upd) { + n = read(fd, &size, sizeof(size)); + if(n < 0) { + log_err(sky, "%s: could not read the `size' data -- %s.\n", + str_cget(&stamp_filename), strerror(errno)); + res = RES_IO_ERR; + goto error; + } + upd = (size_t)n != sizeof(size) || statbuf.st_size != size; + } + +exit: + *out_upd = upd; + str_release(&stamp_filename); + if(fd >= 0) CHK(close(fd) == 0); + return res; +error: + goto exit; +} + +res_T +update_file_stamp(struct htsky* sky, const char* filename) +{ + struct str stamp_filename; + struct stat statbuf; + int fd = -1; + ssize_t n; + res_T res = RES_OK; + ASSERT(sky && filename); + + str_init(sky->allocator, &stamp_filename); + + res = open_file_stamp(sky, filename, &statbuf, &fd, &stamp_filename); + if(res != RES_OK) goto error; + + #define CHK_IO(Func, ErrMsg) { \ + if((Func) < 0) { \ + log_err(sky, "%s: "ErrMsg" -- %s.\n", \ + str_cget(&stamp_filename), strerror(errno)); \ + res = RES_IO_ERR; \ + goto error; \ + } \ + } (void) 0 + + CHK_IO(lseek(fd, 0, SEEK_SET), "could not rewind the file descriptor"); + + /* NOTE: Ignore n >=0 but != sizeof(DATA). In such case stamp is currupted + * and on the next invocation on the same filename, this function will + * return 1 */ + n = write(fd, &statbuf.st_mtim, sizeof(statbuf.st_mtim)); + CHK_IO(n, "could not update the `mtime' data"); + n = write(fd, &statbuf.st_size, sizeof(statbuf.st_size)); + CHK_IO(n, "could not update the `size' data"); + + CHK_IO(fsync(fd), "could not sync the file with storage device"); + + #undef CHK_IO + +exit: + str_release(&stamp_filename); + if(fd >= 0) CHK(close(fd) == 0); + return res; +error: + goto exit; +} + +res_T +create_directory(struct htsky* sky, const char* path) +{ + res_T res = RES_OK; + int err; + ASSERT(sky && path); + + err = mkdir(path, S_IRWXU); + if(!err) goto exit; + + if(errno != EEXIST) { + log_err(sky, "cannot create the `%s' directory -- %s.\n", + path, strerror(errno)); + res = RES_IO_ERR; + goto error; + } else { + const int fd = open(path, O_DIRECTORY); + if(fd < -1) { + log_err(sky, "cannot open the `%s' directory -- %s.\n", + path, strerror(errno)); + res = RES_IO_ERR; + goto error; + } + CHK(!close(fd)); + } +exit: + return res; +error: + goto exit; +} + diff --git a/src/htsky_file_sys.h b/src/htsky_file_sys.h @@ -0,0 +1,40 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#ifndef HTSKY_FILE_SYS_H +#define HTSKY_FILE_SYS_H + +#include <rsys/rsys.h> + +struct htsky; + +extern LOCAL_SYM res_T +is_file_updated + (struct htsky* sky, + const char* filename, + int* is_upd); + +extern LOCAL_SYM res_T +update_file_stamp + (struct htsky* sky, + const char* filename); + +extern LOCAL_SYM res_T +create_directory + (struct htsky* sky, + const char* path); + +#endif /* HTSKY_FILE_SYS_H */ + diff --git a/src/htsky_log.c b/src/htsky_log.c @@ -0,0 +1,180 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#include "htsky_c.h" +#include "htsky_log.h" + +#include <rsys/logger.h> + +#include <stdarg.h> + +#define MSG_INFO_PREFIX "HTSky:\x1b[1m\x1b[32minfo\x1b[0m: " +#define MSG_ERROR_PREFIX "HTSky:\x1b[1m\x1b[31merror\x1b[0m: " +#define MSG_WARNING_PREFIX "HTSky:\x1b[1m\x1b[33mwarning\x1b[0m: " + +/******************************************************************************* + * Helper functions + ******************************************************************************/ +static INLINE void +log_msg + (const struct smtl* smtl, + const enum log_type stream, + const char* msg, + va_list vargs) +{ + ASSERT(smtl && msg); + if(smtl->verbose) { + res_T res; (void)res; + res = logger_vprint(smtl->logger, stream, msg, vargs); + ASSERT(res == RES_OK); + } +} + +static void +print_info(const char* msg, void* ctx) +{ + (void)ctx; + fprintf(stderr, MSG_INFO_PREFIX"%s", msg); +} + +static void +print_err(const char* msg, void* ctx) +{ + (void)ctx; + fprintf(stderr, MSG_ERROR_PREFIX"%s", msg); +} + +static void +print_warn(const char* msg, void* ctx) +{ + (void)ctx; + fprintf(stderr, MSG_WARNING_PREFIX"%s", msg); +} + +static res_T +setup_default_logger(struct mem_allocator* allocator, struct logger* logger) +{ + res_T res = RES_OK; + ASSERT(logger); + res = logger_init(allocator, logger); + if(res != RES_OK) return res; + logger_set_stream(logger, LOG_OUTPUT, print_info, NULL); + logger_set_stream(logger, LOG_ERROR, print_err, NULL); + logger_set_stream(logger, LOG_WARNING, print_warn, NULL); + return RES_OK; +} + +/******************************************************************************* + * Local functions + ******************************************************************************/ +res_T +setup_log_default(struct htsky* sky) +{ + res_T res = RES_OK; + ASSERT(sky); + + res = setup_default_logger(sky->allocator, &sky->logger__); + if(res != RES_OK) { + if(verbose) { + fprintf(stderr, MSG_ERROR_PREFIX "could not setup the HTSky logger.\n"); + } + goto error; + } + sky->logger = sky->logger__; + +exit: + return res; +error: + goto exit; +} + +void +log_info(const struct htsky* sky, const char* msg, ...) +{ + va_list vargs_list; + ASSERT(sky && msg); + + va_start(vargs_list, msg); + log_msg(sky, LOG_OUTPUT, msg, vargs_list); + va_end(vargs_list); +} + +void +log_err(const struct htsky* sky, const char* msg, ...) +{ + va_list vargs_list; + ASSERT(sky && msg); + + va_start(vargs_list, msg); + log_msg(sky, LOG_ERROR, msg, vargs_list); + va_end(vargs_list); +} + +void +log_warn(const struct smtl* smtl, const char* msg, ...) +{ + va_list vargs_list; + ASSERT(sky && msg); + + va_start(vargs_list, msg); + log_msg(sky, LOG_WARNING, msg, vargs_list); + va_end(vargs_list); +} + +static void +log_svx_memory_usage(struct htsky* sky) +{ + char dump[128]; + char* dst = dump; + size_t available_space = sizeof(dump); + const size_t KILO_BYTE = 1024; + const size_t MEGA_BYTE = 1024*KILO_BYTE; + const size_t GIGA_BYTE = 1024*MEGA_BYTE; + size_t ngigas, nmegas, nkilos, memsz, len; + ASSERT(sky); + + memsz = MEM_ALLOCATED_SIZE(&sky->svx_allocator); + + if((ngigas = memsz / GIGA_BYTE) != 0) { + len = (size_t)snprintf(dst, available_space, + "%lu GB ", (unsigned long)ngigas); + CHK(len < available_space); + dst += len; + available_space -= len; + memsz -= ngigas * GIGA_BYTE; + } + if((nmegas = memsz / MEGA_BYTE) != 0) { + len = (size_t)snprintf(dst, available_space, + "%lu MB ", (unsigned long)nmegas); + CHK(len < available_space); + dst += len; + available_space -= len; + memsz -= nmegas * MEGA_BYTE; + } + if((nkilos = memsz / KILO_BYTE) != 0) { + len = (size_t)snprintf(dst, available_space, + "%lu KB ", (unsigned long)nkilos); + dst += len; + available_space -= len; + memsz -= nkilos * KILO_BYTE; + } + if(memsz) { + len = (size_t)snprintf(dst, available_space, + "%lu Byte%s", (unsigned long)memsz, memsz > 1 ? "s" : ""); + CHK(len < available_space); + } + log_info(sky, "SVX memory usage: %s\n", dump); +} + diff --git a/src/htsky_log.h b/src/htsky_log.h @@ -0,0 +1,67 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#ifndef HTSKY_LOG_H +#define HTSKY_LOG_H + +#include <rsys/rsys.h> + +struct htsky; + +extern LOCAL_SYM res_T +setup_log_default + (struct htsky* sky); + +/* Conditionally log a message on the LOG_OUTPUT stream of the htsky logger, + * with respect to its verbose flag */ +extern LOCAL_SYM void +log_info + (const struct htsky* sky, + const char* msg, + ...) +#ifdef COMPILER_GCC + __attribute((format(printf, 2, 3))) +#endif +; + +/* Conditionally log a message on the LOG_ERROR stream of the htsky logger, + * with respect to its verbose flag */ +extern LOCAL_SYM void +log_err + (const struct htsky* sky, + const char* msg, + ...) +#ifdef COMPILER_GCC + __attribute((format(printf, 2, 3))) +#endif +; + +/* Conditionally log a message on the LOG_WARNING stream of the device logger, + * with respect to its verbose flag */ +extern LOCAL_SYM void +log_warn + (const struct htsky* sky, + const char* msg, + ...) +#ifdef COMPILER_GCC + __attribute((format(printf, 2, 3))) +#endif +; + +extern LOCAL_SYM void +log_svx_memory_usage + (struct htsky* sky); + +#endif /* HTSKY_LOG_H * diff --git a/src/htsky_svx.c b/src/htsky_svx.c @@ -0,0 +1,418 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#include "htsky.h" +#include "htsky_atmosphere.h" +#include "htsky_c.h" +#include "htsky_cloud.h" +#include "htsky_svx.h" + +#include <star/svx.h> + +struct trace_cloud_context { + struct svx_tree* clouds; + struct svx_hit* hit; + svx_hit_challenge_T challenge; + svx_hit_filter_T filter; + void* context; +}; +static const struct trace_cloud_context TRACE_CLOUD_CONTEXT_NULL; + +/******************************************************************************* + * Helper functions + ******************************************************************************/ +/* Smits intersection: "Efficiency issues for ray tracing" */ +static FINLINE void +ray_intersect_aabb + (const double org[3], + const double dir[3], + const double range[2], + const double low[3], + const double upp[3], + const int axis_mask, + double hit_range[2]) +{ + double hit[2]; + int i; + ASSERT(org && dir && range && low && upp && hit_range); + ASSERT(low[0] < upp[0]); + ASSERT(low[1] < upp[1]); + ASSERT(low[2] < upp[2]); + + hit_range[0] = INF; + hit_range[1] =-INF; + hit[0] = range[0]; + hit[1] = range[1]; + FOR_EACH(i, 0, 3) { + double t_min, t_max; + + if(!(BIT(i) & axis_mask)) continue; + + t_min = (low[i] - org[i]) / dir[i]; + t_max = (upp[i] - org[i]) / dir[i]; + + if(t_min > t_max) SWAP(double, t_min, t_max); + hit[0] = MMAX(t_min, hit[0]); + hit[1] = MMIN(t_max, hit[1]); + if(hit[0] > hit[1]) return; + } + hit_range[0] = hit[0]; + hit_range[1] = hit[1]; +} + +static res_T +infinite_cloudy_slab_trace_ray + (struct htsky* sky, + struct svx_tree* clouds, + const double org[3], + const double dir[3], + const double range[2], + const size_t max_steps, + svx_hit_challenge_T challenge, + svx_hit_filter_T filter, + void* context, + struct svx_hit* hit) +{ + double pos[2]; + double org_cs[3]; /* Origin of the ray transformed in local cell space */ + const double* cell_low; + const double* cell_upp; + double cell_low_ws[3]; /* Cell lower bound in world space */ + double cell_upp_ws[3]; /* Cell upper bound in world space */ + double cell_sz[3]; /* Size of a cell */ + double t_max[3], t_delta[2], t_min_z; + size_t istep; + int64_t xy[2]; /* 2D index of the repeated cell */ + int incr[2]; /* Index increment */ + res_T res = RES_OK; + ASSERT(sky && clouds && org && dir && range && ctx && hit); + ASSERT(range[0] < range[1]); + + cell_low = sky->htcp_desc.lower; + cell_upp = sky->htcp_decc.upper; + + /* Check that the ray intersects the slab */ + t_min_z = (cell_low[2] - org[2]) / dir[2]; + t_max[2] = (cell_upp[2] - org[2]) / dir[2]; + if(t_min_z > t_max[2]) SWAP(double, t_min_z, t_max[2]); + t_min_z = MMAX(t_min_z, range[0]); + t_max[2] = MMIN(t_max[2], range[1]); + if(t_min_z > t_max[2]) return RES_OK; + + /* Compute the size of a cell */ + cell_sz[0] = cell_upp[0] - cell_low[0]; + cell_sz[1] = cell_upp[1] - cell_low[1]; + cell_sz[2] = cell_upp[2] - cell_low[2]; + + /* Define the 2D index of the current cell. (0,0) is the index of the + * non duplicated cell */ + pos[0] = org[0] + t_min_z*dir[0]; + pos[1] = org[1] + t_min_z*dir[1]; + xy[0] = (int64_t)floor((pos[0] - cell_low[0]) / cell_sz[0]); + xy[1] = (int64_t)floor((pos[1] - cell_low[1]) / cell_sz[1]); + + /* Define the 2D index increment wrt dir sign */ + incr[0] = dir[0] < 0 ? -1 : 1; + incr[1] = dir[1] < 0 ? -1 : 1; + + /* Compute the world space AABB of the repeated cell currently hit */ + cell_low_ws[0] = cell_low[0] + (double)xy[0]*cell_sz[0]; + cell_low_ws[1] = cell_low[1] + (double)xy[1]*cell_sz[1]; + cell_low_ws[2] = cell_low[2]; + cell_upp_ws[0] = cell_low_ws[0] + cell_sz[0]; + cell_upp_ws[1] = cell_low_ws[1] + cell_sz[1]; + cell_upp_ws[2] = cell_upp[2]; + + /* Compute the max ray intersection with the current cell */ + t_max[0] = ((dir[0]<0 ? cell_low_ws[0] : cell_upp_ws[0]) - org[0]) / dir[0]; + t_max[1] = ((dir[1]<0 ? cell_low_ws[1] : cell_upp_ws[1]) - org[1]) / dir[1]; + /*t_max[2] = ((dir[2]<0 ? cell_low_ws[2] : cell_upp_ws[2]) - org[2]) / dir[2];*/ + ASSERT(t_max[0] >= 0 && t_max[1] >= 0 && t_max[2] >= 0); + + /* Compute the distance along the ray to traverse in order to move of a + * distance equal to the cloud size along the X and Y axis */ + t_delta[0] = (dir[0]<0 ? -cell_sz[0] : cell_sz[0]) / dir[0]; + t_delta[1] = (dir[1]<0 ? -cell_sz[1] : cell_sz[1]) / dir[1]; + ASSERT(t_delta[0] >= 0 && t_delta[1] >= 0); + + org_cs[2] = org[2]; + FOR_EACH(istep, 0, max_steps) { + int iaxis; + int hit; + + /* Transform the ray origin in the local cell space */ + org_cs[0] = org[0] - (double)xy[0]*cell_sz[0]; + org_cs[1] = org[1] - (double)xy[1]*cell_sz[1]; + + res = svx_tree_trace_ray + (clouds, org_cs, dir, range, challenge, filter, context, hit); + if(res != RES_OK) { + log_err(sky, + "%s: could not trace the ray in the repeated cells -- %s.\n", + FUNC_NAME, res_to_cstr(res)); + goto error; + } + if(!SVX_HIT_NONE(hit)) goto exit; + + /* Define the next axis to traverse */ + iaxis = t_max[0] < t_max[1] + ? (t_max[0] < t_max[2] ? 0 : 2) + : (t_max[1] < t_max[2] ? 1 : 2); + + if(iaxis == 2) break; /* The ray traverse the slab */ + + if(t_max[iaxis] >= range[1]) break; /* Out of bound */ + + t_max[iaxis] += t_delta[iaxis]; + + /* Define the 2D index of the next traversed cloud */ + xy[iaxis] += incr[iaxis]; + } + +exit: + return res; +error: + goto exit; +} + + +/******************************************************************************* + * Exported functions + ******************************************************************************/ +double +htsky_fetch_svx_property + (const struct htsky* sky, + const enum htsky_property prop, + const enum htsky_svx_op op, + const int components_mask, /* Combination of htsky_component_flag */ + const size_t iband, /* Index of the spectral band */ + const size_t iquad, /* Index of the quadrature point in the spectral band */ + const double pos[3]) +{ + struct svx_voxel voxel = SVX_VOXEL_NULL; + struct atmosphere* atmosphere = NULL; + struct cloud* cloud = NULL; + size_t i; + int in_clouds; /* Defines if `pos' lies in the clouds */ + int in_atmosphere; /* Defines if `pos' lies in the atmosphere */ + int comp_mask = components_mask; + ASSERT(sky && pos); + ASSERT(comp_mask & HTSKY_CPNT_MASK_ALL); + ASSERT(iband >= sky->sw_bands_range[0]); + ASSERT(iband <= sky->sw_bands_range[1]); + + i = iband - sky->sw_bands_range[0]; + cloud = sky->is_cloudy ? &sky->clouds[i][iquad] : NULL; + atmosphere = &sky->atmosphere[i][iquad]; + + /* Is the position inside the clouds? */ + if(sky->is_cloudy) { + in_clouds = 0; + } else if(sky->repeat_clouds) { + in_clouds = + pos[2] >= cloud->octree_desc.lower[2] + && pos[2] <= cloud->octree_desc.upper[2]; + } else { + in_clouds = + pos[0] >= cloud->octree_desc.lower[0] + && pos[1] >= cloud->octree_desc.lower[1] + && pos[2] >= cloud->octree_desc.lower[2] + && pos[0] <= cloud->octree_desc.upper[0] + && pos[1] <= cloud->octree_desc.upper[1] + && pos[2] <= cloud->octree_desc.upper[2]; + } + + ASSERT(atmosphere->bitree_desc.frame[0] == SVX_AXIS_Z); + in_atmosphere = + pos[2] >= atmosphere->bitree_desc.lower[2] + && pos[2] <= atmosphere->bitree_desc.upper[2]; + + if(!in_clouds) { /* Not in clouds => No particle */ + comp_mask &= ~HTSKY_CPNT_FLAG_PARTICLES; + } + if(!in_atmosphere) { /* Not in atmosphere => No gas */ + comp_mask &= ~HTSKY_CPNT_FLAG_GAS; + } + + if(!in_clouds && !in_atmosphere) /* In vacuum */ + return 0; + + if(!in_clouds) { + ASSERT(in_atmosphere); + SVX(tree_at(atmosphere->bitree, pos, NULL, NULL, &voxel)); + } else { + double pos_cs[3]; + world_to_cloud(sky, pos, pos_cs); + SVX(tree_at(cloud->octree, pos_cs, NULL, NULL, &voxel)); + } + + return htsky_fetch_svx_voxel_property + (sky, prop, op, comp_mask, iband, iquad, &voxel); +} + +double +htsky_fetch_svx_voxel_property + (const struct htsky* sky, + const enum htsky_property prop, + const enum htsky_svx_op op, + const int components_mask, + const size_t ispectral_band, /* Index of the spectral band */ + const size_t iquad, /* Index of the quadrature point in the spectral band */ + const struct svx_voxel* voxel) +{ + double gas = 0; + double par = 0; + int comp_mask = components_mask; + ASSERT(sky && voxel); + ASSERT((unsigned)prop < HTSKY_PROPERTIES_COUNT__); + ASSERT((unsigned)op < HTSKY_SVX_OPS_COUNT__); + (void)sky, (void)ispectral_band, (void)iquad; + + /* Check if the voxel has infinite bounds/degenerated. In such case it is + * atmospheric voxel with only gas properties */ + if(IS_INF(voxel->upper[0]) || voxel->lower[0] > voxel->upper[0]) { + ASSERT(IS_INF(voxel->upper[1]) || voxel->lower[1] > voxel->upper[1]); + comp_mask &= ~HTSKY_CPNT_FLAG_PARTICLES; + } + + if(comp_mask & HTSKY_CPNT_FLAG_PARTICLES) { + par = vox_get(voxel->data, HTSKY_CPNT_PARTICLES, prop, op); + } + if(comp_mask & HTSKY_CPNT_FLAG_GAS) { + gas = vox_get(voxel->data, HTSKY_CPNT_GAS, prop, op); + } + return par + gas; +} + +res_T +htsky_trace_ray + (struct htsky* sky, + const double org[3], + const double dir[3], /* Must be normalized */ + const double range[2], + const svx_hit_challenge_T challenge, /* NULL <=> Traversed up to the leaves */ + const svx_hit_filter_T filter, /* NULL <=> Stop RT at the 1st hit voxel */ + void* context, /* Data sent to the filter functor */ + const size_t ispectral_band, + const size_t iquadrature_pt, + struct svx_hit* hit) +{ + double cloud_range[2]; + struct svx_tree* clouds; + struct svx_tree* atmosphere; + size_t i; + res_T res = RES_OK; + ASSERT(sky); + ASSERT(ispectral_band >= sky->sw_bands_range[0]); + ASSERT(ispectral_band <= sky->sw_bands_range[1]); + (void)iquadrature_pt; + + /* Fetch the clouds/atmosphere corresponding to the submitted spectral data */ + i = ispectral_band - sky->sw_bands_range[0]; + clouds = sky->is_cloudy ? sky->clouds[i][iquadrature_pt].octree : NULL; + atmosphere = sky->atmosphere[i][iquadrature_pt].bitree; + + cloud_range[0] = INF; + cloud_range[1] =-INF; + + if(sky->is_cloudy) { + /* Compute the ray range, intersecting the clouds AABB */ + if(sky->repeat_clouds) { + ray_intersect_aabb(org, dir, range, sky->htcp_desc.lower, + sky->htcp_desc.upper, AXIS_Z, cloud_range); + } else { + ray_intersect_aabb(org, dir, range, sky->htcp_desc.lower, + sky->htcp_desc.upper, AXIS_X|AXIS_Y|AXIS_Z, cloud_range); + } + } + + /* Reset the hit */ + *hit = SVX_HIT_NULL; + + if(cloud_range[0] >= cloud_range[1]) { /* The ray does not traverse the clouds */ + res = svx_tree_trace_ray(atmosphere, org, dir, range, challenge, filter, + context, hit); + if(res != RES_OK) { + log_err(sky, "%s: could not trace the ray in the atmosphere.\n", FUNC_NAME); + goto error; + } + } else { /* The ray may traverse the clouds */ + double range_adjusted[2]; + + if(cloud_range[0] > range[0]) { /* The ray begins in the atmosphere */ + /* Trace a ray in the atmosphere from range[0] to cloud_range[0] */ + range_adjusted[0] = range[0]; + range_adjusted[1] = nextafter(cloud_range[0], -DBL_MAX); + res = svx_tree_trace_ray(atmosphere, org, dir, range_adjusted, challenge, + filter, context, hit); + if(res != RES_OK) { + log_err(sky, + "%s: could not to trace the part that begins in the atmosphere.\n", + FUNC_NAME); + goto error; + } + if(!SVX_HIT_NONE(hit)) goto exit; /* Collision */ + } + + /* Pursue ray traversal into the clouds */ + if(!sky->repeat_clouds) { + res = svx_tree_trace_ray(clouds, org, dir, cloud_range, challenge, filter, + context, hit); + if(res != RES_OK) { + log_err(sky, + "%s: could not trace the ray part that intersects the clouds.\n", + FUNC_NAME); + goto error; + } + if(!SVX_HIT_NONE(hit)) goto exit; /* Collision */ + + /* Clouds are infinitely repeated along the X and Y axis */ + } else { + struct trace_cloud_context slab_ctx = TRACE_CLOUD_CONTEXT_NULL; + + slab_ctx.clouds = clouds; + slab_ctx.challenge = challenge; + slab_ctx.filter = filter; + slab_ctx.context = context; + slab_ctx.hit = hit; + + res = infinite_cloudy_slab_trace_ray(sky, clouds, org, dir, cloud_range, + 32, challenge, filter, context, hit); + if(res != RES_OK) goto error; + + if(!SVX_HIT_NONE(hit)) goto exit; /* Collision */ + } + + /* Pursue ray traversal into the atmosphere */ + range_adjusted[0] = nextafter(cloud_range[1], DBL_MAX); + range_adjusted[1] = range[1]; + res = svx_tree_trace_ray(atmosphere, org, dir, range_adjusted, challenge, + filter, context, hit); + if(res != RES_OK) { + log_err(sky, + "%s: could not trace the ray part that ends in the atmosphere.\n", + FUNC_NAME); + goto error; + } + if(!SVX_HIT_NONE(hit)) goto exit; /* Collision */ + } + +exit: + return res; +error: + goto exit; +} + + diff --git a/src/htsky_svx.h b/src/htsky_svx.h @@ -0,0 +1,144 @@ +/* Copyright (C) 2020 |Meso|Star> (contact@meso-star.com) + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. */ + +#ifndef HTSKY_SVX_H +#define HTSKY_SVX_H + +#include "htsky.h" + +#include <rsys/math.h> + + /* + * SVX Memory layout + * ----------------- + * + * For each SVX voxel, the data of the optical property are stored + * linearly as N single precision floating point data, with N computed as + * bellow: + * + * N = HTSKY_PROPS_COUNT__ #optical properties per voxel + * * HTSKY_SVX_OPS_COUNT__ #supported operations on each properties + * * HTSKY_CPNTS_COUNT__; #components on which properties are defined + * + * In a given voxel, the index `id' in [0, N-1] corresponding to the optical + * property `enum htrdr_sky_property P' of the component `enum + * htrdr_sky_component C' according to the operation `enum htsky_svx_op O' is + * then computed as bellow: + * + * id = C * NFLOATS_PER_CPNT + P * HTSKY_SVX_OPS_COUNT__ + O; + * NFLOATS_PER_CPNT = HTSKY_SVX_OPS_COUNT__ * HTSKY_PROPS_COUNT__; + */ + +/* Constant defining the number of floating point data per component */ +#define NFLOATS_PER_CPNT (HTSKY_SVX_OPS_COUNT__ * HTSKY_PROPS_COUNT__) + +/* Constant defining the overall number of floating point data of a voxel */ +#define NFLOATS_PER_VOXEL (NFLOATS_PER_CPNT * HTSY_CPNTS_COUNT__) + +/* Context used to build the SVX hierarchical data structures */ +struct build_tree_context { + const struct htsky* sky; + double vxsz[3]; + double tau_threshold; /* Threshold criteria for the merge process */ + size_t iband; /* Index of the band that overlaps the CIE XYZ color space */ + size_t quadrature_range[2]; /* Range of quadrature point indices to handle */ +}; +static const struct build_tree_context BUILD_TREE_CONTEXT_NULL; + +static FINLINE float +vox_get + (const float* data, + const enum htsky_component cpnt, + const enum htsky_property prop, + const enum htsky_svx_op op) +{ + ASSERT(data); + return data[cpnt*NFLOATS_PER_CPNT+ prop*HTSKY_SVX_OPS_COUNT__ + op]; +} + +static FINLINE void +vox_set + (float* data, + const enum htsky_component cpnt, + const enum htsky_property prop, + const enum htsky_svx_op op, + const float val) +{ + ASSERT(data); + data[cpnt*NFLOATS_PER_CPNT+ prop*HTSKY_SVX_OPS_COUNT__ + op] = val; +} + +static INLINE void +vox_merge_component + (float* vox_out, + const enum htsky_component cpnt, + const float* voxs[], + const size_t nvoxs) +{ + float ka_min = FLT_MAX; + float ka_max =-FLT_MAX; + float ks_min = FLT_MAX; + float ks_max =-FLT_MAX; + float kext_min = FLT_MAX; + float kext_max =-FLT_MAX; + size_t ivox; + ASSERT(vox_out && voxs && nvoxs); + + FOR_EACH(ivox, 0, nvoxs) { + const float* vox = voxs[ivox]; + ka_min = MMIN(ka_min, vox_get(vox, cpnt, HTSKY_Ka, HTSKY_SVX_MIN)); + ka_max = MMAX(ka_max, vox_get(vox, cpnt, HTSKY_Ka, HTSKY_SVX_MAX)); + ks_min = MMIN(ks_min, vox_get(vox, cpnt, HTSKY_Ks, HTSKY_SVX_MIN)); + ks_max = MMAX(ks_max, vox_get(vox, cpnt, HTSKY_Ks, HTSKY_SVX_MAX)); + kext_min = MMIN(kext_min, vox_get(vox, cpnt, HTSKY_Kext, HTSKY_SVX_MIN)); + kext_max = MMAX(kext_max, vox_get(vox, cpnt, HTSKY_Kext, HTSKY_SVX_MAX)); + } + + vox_set(vox_out, cpnt, HTSKY_Ka, HTSKY_SVX_MIN, ka_min); + vox_set(vox_out, cpnt, HTSKY_Ka, HTSKY_SVX_MAX, ka_max); + vox_set(vox_out, cpnt, HTSKY_Ks, HTSKY_SVX_MIN, ks_min); + vox_set(vox_out, cpnt, HTSKY_Ks, HTSKY_SVX_MAX, ks_max); + vox_set(vox_out, cpnt, HTSKY_Kext, HTSKY_SVX_MIN, kext_min); + vox_set(vox_out, cpnt, HTSKY_Kext, HTSKY_SVX_MAX, kext_max); +} + +static INLINE int +vox_challenge_merge_component + (const enum htrdr_sky_component comp, + const struct svx_voxel voxels[], + const size_t nvoxs, + struct build_tree_context* ctx) +{ + double lower_z = DBL_MAX; + double upper_z =-DBL_MAX; + double dst; + float kext_min = FLT_MAX; + float kext_max =-FLT_MAX; + size_t ivox; + ASSERT(voxels && nvoxs && ctx); + + FOR_EACH(ivox, 0, nvoxs) { + const float* vox = voxels[ivox].data; + kext_min = MMIN(kext_min, vox_get(vox, comp, HTSKY_Kext, HTSKY_SVX_MIN)); + kext_max = MMAX(kext_max, vox_get(vox, comp, HTSKY_Kext, HTSKY_SVX_MAX)); + lower_z = MMIN(voxels[ivox].lower[2], lower_z); + upper_z = MMAX(voxels[ivox].upper[2], upper_z); + } + dst = upper_z - lower_z; + return (kext_max - kext_min)*dst <= ctx->tau_threshold; +} + +#endif /* HTSKY_SVX_H */ +