star-3d

Surface structuring for efficient 3D geometric queries
git clone git://git.meso-star.fr/star-3d.git
Log | Files | Refs | README | LICENSE

test_s3d_accel_struct_conf.c (7749B)


      1 /* Copyright (C) 2015-2023 |Méso|Star> (contact@meso-star.com)
      2  *
      3  * This program is free software: you can redistribute it and/or modify
      4  * it under the terms of the GNU General Public License as published by
      5  * the Free Software Foundation, either version 3 of the License, or
      6  * (at your option) any later version.
      7  *
      8  * This program is distributed in the hope that it will be useful,
      9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
     10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
     11  * GNU General Public License for more details.
     12  *
     13  * You should have received a copy of the GNU General Public License
     14  * along with this program. If not, see <http://www.gnu.org/licenses/>. */
     15 
     16 #include "s3d.h"
     17 #include "test_s3d_utils.h"
     18 
     19 #include <rsys/clock_time.h>
     20 #include <rsys/math.h>
     21 #include <string.h>
     22 
     23 /*******************************************************************************
     24  * Mesh functions and data structure
     25  ******************************************************************************/
     26 struct mesh {
     27   double* pos;
     28   size_t* ids;
     29   size_t nverts;
     30   size_t ntris;
     31   struct mem_allocator* allocator;
     32 };
     33 
     34 static void
     35 mesh_init_sphere
     36   (struct mesh* sphere,
     37    struct mem_allocator* allocator,
     38    const size_t nthetas)
     39 {
     40   const size_t nphis = (size_t)(((double)nthetas + 0.5) * 0.5);
     41   const double step_theta = 2*PI / (double)nthetas;
     42   const double step_phi = PI / (double)nphis;
     43   size_t itheta, iphi;
     44   size_t i;
     45 
     46   CHK(sphere && allocator && nthetas);
     47   memset(sphere, 0, sizeof(*sphere));
     48 
     49   sphere->nverts = nthetas * (nphis-1)/*#contour verts*/ + 2 /*polar verts*/;
     50   sphere->ntris = 2*nthetas * (nphis-2)/*#contour tris*/ + 2*nthetas/*#polar tris*/;
     51   sphere->allocator = allocator;
     52 
     53   sphere->pos = MEM_CALLOC(allocator, sphere->nverts, sizeof(double[3]));
     54   CHK(sphere->pos);
     55   sphere->ids = MEM_CALLOC(allocator, sphere->ntris, sizeof(size_t[3]));
     56   CHK(sphere->ids);
     57 
     58   /* Build the contour vertices */
     59   i = 0;
     60   FOR_EACH(itheta, 0, nthetas) {
     61     const double theta = -PI + (double)itheta * step_theta;
     62     const double cos_theta = cos(theta);
     63     const double sin_theta = sin(theta);
     64     FOR_EACH(iphi, 0, nphis-1) {
     65       const double phi = -PI*0.5 + (double)(iphi + 1) * step_phi;
     66       const double cos_phi = cos(phi);
     67       const double sin_phi = sin(phi);
     68       sphere->pos[i++] = cos_phi * cos_theta;
     69       sphere->pos[i++] = cos_phi * sin_theta;
     70       sphere->pos[i++] = sin_phi;
     71     }
     72   }
     73   /* polar vertices */
     74   sphere->pos[i++] = 0.0; sphere->pos[i++] = 0.0; sphere->pos[i++] =-1.0;
     75   sphere->pos[i++] = 0.0; sphere->pos[i++] = 0.0; sphere->pos[i++] = 1.0;
     76   CHK(i == sphere->nverts*3);
     77 
     78   /* Define the indices of the contour primitives */
     79   i = 0;
     80   FOR_EACH(itheta, 0, nthetas) {
     81     const size_t itheta0 = itheta * (nphis - 1);
     82     const size_t itheta1 = ((itheta + 1) % nthetas) * (nphis - 1);
     83     FOR_EACH(iphi, 0,  nphis-2) {
     84       const size_t iphi0 = iphi + 0;
     85       const size_t iphi1 = iphi + 1;
     86       sphere->ids[i++] = itheta0 + iphi0; /* First triangle */
     87       sphere->ids[i++] = itheta0 + iphi1;
     88       sphere->ids[i++] = itheta1 + iphi0;
     89       sphere->ids[i++] = itheta1 + iphi0; /* Second triangle */
     90       sphere->ids[i++] = itheta0 + iphi1;
     91       sphere->ids[i++] = itheta1 + iphi1;
     92     }
     93   }
     94   /* Define the indices of the polar primitives */
     95   FOR_EACH(itheta, 0, nthetas) {
     96     const size_t itheta0 = itheta * (nphis - 1);
     97     const size_t itheta1 = ((itheta + 1) % nthetas) * (nphis - 1);
     98     sphere->ids[i++] = nthetas * (nphis - 1);
     99     sphere->ids[i++] = itheta0;
    100     sphere->ids[i++] = itheta1;
    101     sphere->ids[i++] = nthetas * (nphis - 1) + 1;
    102     sphere->ids[i++] = itheta1 + (nphis - 2);
    103     sphere->ids[i++] = itheta0 + (nphis - 2);
    104   }
    105   CHK(i == sphere->ntris*3);
    106 }
    107 
    108 static void
    109 mesh_release(struct mesh* mesh)
    110 {
    111   CHK(mesh);
    112   MEM_RM(mesh->allocator, mesh->pos);
    113   MEM_RM(mesh->allocator, mesh->ids);
    114 }
    115 
    116 static INLINE void
    117 mesh_dump(const struct mesh* mesh, FILE* stream)
    118 {
    119   size_t i;
    120   CHK(mesh && stream);
    121   FOR_EACH(i, 0, mesh->nverts) {
    122     fprintf(stream, "v %g %g %g\n",
    123       mesh->pos[i*3+0],
    124       mesh->pos[i*3+1],
    125       mesh->pos[i*3+2]);
    126   }
    127   FOR_EACH(i, 0, mesh->ntris) {
    128     fprintf(stream, "f %lu %lu %lu\n",
    129       (unsigned long)mesh->ids[i*3+0]+1,
    130       (unsigned long)mesh->ids[i*3+1]+1,
    131       (unsigned long)mesh->ids[i*3+2]+1);
    132   }
    133 }
    134 
    135 static void
    136 mesh_get_pos(const unsigned ivert, float pos[3], void* ctx)
    137 {
    138   const struct mesh* mesh = ctx;
    139   CHK(pos && ctx && ivert < mesh->nverts);
    140   pos[0] = (float)mesh->pos[ivert*3+0];
    141   pos[1] = (float)mesh->pos[ivert*3+1];
    142   pos[2] = (float)mesh->pos[ivert*3+2];
    143 }
    144 
    145 static void
    146 mesh_get_tri(const unsigned itri, unsigned ids[3], void* ctx)
    147 {
    148   const struct mesh* mesh = ctx;
    149   CHK(ids && ctx && itri < mesh->ntris);
    150   ids[0] = (unsigned)mesh->ids[itri*3+0];
    151   ids[1] = (unsigned)mesh->ids[itri*3+1];
    152   ids[2] = (unsigned)mesh->ids[itri*3+2];
    153 }
    154 
    155 /*******************************************************************************
    156  * Helper functions
    157  ******************************************************************************/
    158 static void
    159 time_scene_view_creation
    160   (struct s3d_scene* scn,
    161    const struct s3d_accel_struct_conf* cfg,
    162    const char* string)
    163 {
    164   char dump[128];
    165   struct time t0, t1;
    166   struct s3d_scene_view* view;
    167   CHK(scn);
    168 
    169   time_current(&t0);
    170   CHK(s3d_scene_view_create2(scn, S3D_TRACE, cfg, &view) == RES_OK);
    171   time_sub(&t0, time_current(&t1), &t0);
    172   time_dump(&t0, TIME_ALL, NULL, dump, sizeof(dump));
    173   printf("%s: %s\n", string, dump);
    174   CHK(s3d_scene_view_ref_put(view) == RES_OK);
    175 }
    176 
    177 /*******************************************************************************
    178  * Main test function
    179  ******************************************************************************/
    180 int
    181 main(int argc, char** argv)
    182 {
    183   struct mem_allocator allocator;
    184   struct mesh sphere;
    185   struct s3d_device* dev;
    186   struct s3d_shape* shape;
    187   struct s3d_scene* scn;
    188   struct s3d_scene_view* view;
    189   struct s3d_vertex_data vdata = S3D_VERTEX_DATA_NULL;
    190   struct s3d_accel_struct_conf cfg = S3D_ACCEL_STRUCT_CONF_DEFAULT;
    191   (void)argc, (void)argv;
    192 
    193   mem_init_proxy_allocator(&allocator, &mem_default_allocator);
    194 
    195   mesh_init_sphere(&sphere, &allocator, 256);
    196   /*mesh_dump(&sphere, stdout);*/
    197 
    198   CHK(s3d_device_create(NULL, &allocator, 1, &dev) == RES_OK);
    199   CHK(s3d_scene_create(dev, &scn) == RES_OK);
    200   CHK(s3d_shape_create_mesh(dev, &shape) == RES_OK);
    201   CHK(s3d_scene_attach_shape(scn, shape) == RES_OK);
    202 
    203   vdata.usage = S3D_POSITION;
    204   vdata.type = S3D_FLOAT3;
    205   vdata.get = mesh_get_pos;
    206   CHK(s3d_mesh_setup_indexed_vertices(shape, (unsigned)sphere.ntris, mesh_get_tri,
    207     (unsigned)sphere.nverts, &vdata, 1, &sphere) == RES_OK);
    208 
    209   CHK(s3d_scene_view_create2(NULL, S3D_TRACE, NULL, &view) == RES_BAD_ARG);
    210   CHK(s3d_scene_view_create2(scn, S3D_TRACE, NULL, NULL) == RES_BAD_ARG);
    211 
    212   time_scene_view_creation(scn, NULL, "All default");
    213 
    214   cfg.quality = S3D_ACCEL_STRUCT_QUALITY_LOW;
    215   cfg.mask = S3D_ACCEL_STRUCT_FLAG_ROBUST | S3D_ACCEL_STRUCT_FLAG_DYNAMIC;
    216   time_scene_view_creation(scn, &cfg, "Low quality, robust & dynamic");
    217 
    218   cfg.quality = S3D_ACCEL_STRUCT_QUALITY_MEDIUM;
    219   cfg.mask = S3D_ACCEL_STRUCT_FLAG_COMPACT;
    220   time_scene_view_creation(scn, &cfg, "Medium quality, compact");
    221 
    222   cfg.quality = S3D_ACCEL_STRUCT_QUALITY_HIGH;
    223   cfg.mask = S3D_ACCEL_STRUCT_FLAG_ROBUST | S3D_ACCEL_STRUCT_FLAG_COMPACT;
    224   time_scene_view_creation(scn, &cfg, "High quality, compact & robust");
    225 
    226   CHK(s3d_shape_ref_put(shape) == RES_OK);
    227   CHK(s3d_scene_ref_put(scn) == RES_OK);
    228   CHK(s3d_device_ref_put(dev) == RES_OK);
    229 
    230   mesh_release(&sphere);
    231 
    232   check_memory_allocator(&allocator);
    233   mem_shutdown_proxy_allocator(&allocator);
    234   CHK(mem_allocated_size() == 0);
    235   return 0;
    236 }
    237