test_atrstm_radcoefs_simd.c (5483B)
1 /* Copyright (C) 2022, 2023 |Méso|Star> (contact@meso-star.com) 2 * Copyright (C) 2020, 2021 Centre National de la Recherche Scientifique 3 * 4 * This program is free software: you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation, either version 3 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. */ 16 17 #include "atrstm_radcoefs_simd4.h" 18 19 int 20 main(int argc, char** argv) 21 { 22 const double ka_ref = 5.7382401729092799E-1; 23 const double ks_ref = 7.2169062018378995E-6; 24 25 const double ka_ref2[4] = { 26 0.52178067472799794, 27 0.52178067472799794, 28 1.0435613494559959, 29 0.52178067472799794 30 }; 31 const double ks_ref2[4] = { 32 9.6010140939975883e-002, 33 3.3272961678492224e-002, 34 0.19202028187995177, 35 9.9964602374815484e-002 36 }; 37 struct radcoefs_simd4 radcoefs = RADCOEFS_SIMD4_NULL; 38 struct radcoefs_compute_simd4_args args = RADCOEFS_COMPUTE_SIMD4_ARGS_NULL; 39 float ALIGN(16) ka[4], ks[4], kext[4]; 40 (void)argc, (void)argv; 41 42 args.lambda = v4f_set1(633.f); 43 args.n = v4f_set1(1.90f); 44 args.kappa = v4f_set1(0.55f); 45 args.fractal_prefactor = v4f_set1(1.70f); 46 args.fractal_dimension = v4f_set1(1.75f); 47 args.soot_volumic_fraction = v4f_set(1e-7f, 0.f, 1e-7f, 1e-7f); 48 args.soot_primary_particles_count = v4f_set(100.f, 100.f, 0.f, 100.f); 49 args.soot_primary_particles_diameter = v4f_set1(1.f); 50 args.radcoefs_mask = ATRSTM_RADCOEFS_MASK_ALL; 51 52 radcoefs_compute_simd4(&radcoefs, &args); 53 54 v4f_store(ka, radcoefs.ka); 55 v4f_store(ks, radcoefs.ks); 56 v4f_store(kext, radcoefs.kext); 57 printf("ka = {%g, %g, %g, %g}; ks = {%g, %g, %g, %g}\n", 58 SPLIT4(ka), SPLIT4(ks)); 59 60 CHK(eq_eps(ka[0], ka_ref, ka_ref*1.e-6)); 61 CHK(eq_eps(ka[3], ka_ref, ka_ref*1.e-6)); 62 CHK(ka[1] == 0); 63 CHK(ka[2] == 0); 64 65 CHK(eq_eps(ks[0], ks_ref, ks_ref*1.e-6)); 66 CHK(eq_eps(ks[3], ks_ref, ks_ref*1.e-6)); 67 CHK(ks[1] == 0); 68 CHK(ks[2] == 0); 69 70 CHK(eq_eps(kext[0], ka_ref+ks_ref, (ka_ref+ks_ref)*1e-6)); 71 CHK(eq_eps(kext[3], ka_ref+ks_ref, (ka_ref+ks_ref)*1e-6)); 72 CHK(kext[1] == 0); 73 CHK(kext[2] == 0); 74 75 args.radcoefs_mask = ATRSTM_RADCOEF_FLAG_Ka; 76 radcoefs_compute_simd4(&radcoefs, &args); 77 v4f_store(ka, radcoefs.ka); 78 v4f_store(ks, radcoefs.ks); 79 v4f_store(kext, radcoefs.kext); 80 CHK(eq_eps(ka[0], ka_ref, ka_ref*1.e-6)); 81 CHK(eq_eps(ka[3], ka_ref, ka_ref*1.e-6)); 82 CHK(ka[1] == 0); 83 CHK(ka[2] == 0); 84 CHK(ks[0] == 0 && ks[1] == 0 && ks[2] == 0 && ks[0] == 0); 85 CHK(kext[0] == 0 && kext[1] == 0 && kext[2] == 0 && kext[0] == 0); 86 87 args.radcoefs_mask = ATRSTM_RADCOEF_FLAG_Ks; 88 radcoefs_compute_simd4(&radcoefs, &args); 89 v4f_store(ka, radcoefs.ka); 90 v4f_store(ks, radcoefs.ks); 91 v4f_store(kext, radcoefs.kext); 92 CHK(eq_eps(ks[0], ks_ref, ks_ref*1.e-6)); 93 CHK(eq_eps(ks[3], ks_ref, ks_ref*1.e-6)); 94 CHK(ks[1] == 0); 95 CHK(ks[2] == 0); 96 CHK(ka[0] == 0 && ka[1] == 0 && ka[2] == 0 && ka[0] == 0); 97 CHK(kext[0] == 0 && kext[1] == 0 && kext[2] == 0 && kext[0] == 0); 98 99 /* Note that actually even though Ka and Ks are note required they are 100 * internally computed to evaluate kext and are returned to the caller. Their 101 * value are thus not null */ 102 args.radcoefs_mask = ATRSTM_RADCOEF_FLAG_Kext; 103 radcoefs_compute_simd4(&radcoefs, &args); 104 v4f_store(kext, radcoefs.kext); 105 CHK(eq_eps(kext[0], ka_ref+ks_ref, (ka_ref+ks_ref)*1e-6)); 106 CHK(eq_eps(kext[3], ka_ref+ks_ref, (ka_ref+ks_ref)*1e-6)); 107 CHK(kext[1] == 0); 108 CHK(kext[2] == 0); 109 110 args.lambda = v4f_set1(633.f); 111 args.n = v4f_set1(1.75f); 112 args.kappa = v4f_set1(0.435f); 113 args.fractal_prefactor = v4f_set1(1.70f); 114 args.fractal_dimension = v4f_set1(1.75f); 115 args.soot_volumic_fraction = v4f_set 116 (9.9999999999999995e-008f, 117 9.9999999999999995e-008f, 118 1.9999999999999999e-007f, 119 9.9999999999999995e-008f); 120 args.soot_primary_particles_count = v4f_set 121 (400.f, 122 400.f, 123 400.f, 124 800.f); 125 args.soot_primary_particles_diameter = v4f_set 126 (34.000000006413003f, 127 17.000000003206502f, 128 34.000000006413003f, 129 34.000000006413003f); 130 args.radcoefs_mask = ATRSTM_RADCOEFS_MASK_ALL; 131 radcoefs_compute_simd4(&radcoefs, &args); 132 v4f_store(ka, radcoefs.ka); 133 v4f_store(ks, radcoefs.ks); 134 v4f_store(kext, radcoefs.kext); 135 printf("ka = {%g, %g, %g, %g}; ks = {%g, %g, %g, %g}\n", 136 SPLIT4(ka), SPLIT4(ks)); 137 CHK(eq_eps(ka[0], ka_ref2[0], ka_ref2[0]*1.e-6)); 138 CHK(eq_eps(ka[1], ka_ref2[1], ka_ref2[1]*1.e-6)); 139 CHK(eq_eps(ka[2], ka_ref2[2], ka_ref2[2]*1.e-6)); 140 CHK(eq_eps(ka[3], ka_ref2[3], ka_ref2[3]*1.e-6)); 141 CHK(eq_eps(ks[0], ks_ref2[0], ks_ref2[0]*1.e-6)); 142 CHK(eq_eps(ks[1], ks_ref2[1], ks_ref2[1]*1.e-6)); 143 CHK(eq_eps(ks[2], ks_ref2[2], ks_ref2[2]*1.e-6)); 144 CHK(eq_eps(ks[3], ks_ref2[3], ks_ref2[3]*1.e-6)); 145 CHK(eq_eps(kext[0], ka_ref2[0]+ks_ref2[0], (ka_ref2[0]+ks_ref2[0])*1.e-6)); 146 CHK(eq_eps(kext[1], ka_ref2[1]+ks_ref2[1], (ka_ref2[1]+ks_ref2[1])*1.e-6)); 147 CHK(eq_eps(kext[2], ka_ref2[2]+ks_ref2[2], (ka_ref2[2]+ks_ref2[2])*1.e-6)); 148 CHK(eq_eps(kext[3], ka_ref2[3]+ks_ref2[3], (ka_ref2[3]+ks_ref2[3])*1.e-6)); 149 150 return 0; 151 } 152